Skip to main content
Log in

Microstructure and Properties of In situ Synthesized TiC/Graphene/Ti6Al4V Composite Coating by Laser Cladding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A graphene (Gr)/Ti6Al4V composite coating was prepared by laser cladding, and the microstructure and the properties were studied. The results showed that an in situ synthesis between Gr and Ti occurred and TiC was formed. The TiC was homogeneously distributed. The α’ acicular martensite was formed at the bottom of the coating during the rapid solidification process, and a good metallurgical bond was formed between the coating and substrate. The TiC and the self-lubrication of Gr improved the wear resistance of coating. And the wear mechanism changed from more serious abrasive and adhesive wear to a mild wear with fine scratches. Meanwhile, severe oxidative wear occurred in the coating and substrate under high-temperature friction and wear. The corrosion resistance of the coating was also improved. The corrosion morphology changed from denudation and pitting to local pitting. The Gr and TiC in the coating effectively preventeds the corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banerjee D and Williams J C, Acta Materialia 61 (2013) 844.

    Article  CAS  Google Scholar 

  2. Feng S -r, Tang H -b, Zhang S -q, and Wang H -m, T Nonferr Metal Soc 22 (2012) 1667.

  3. Obadele B A, Lepule M L, Andrews A, and Olubambi P A, Tribol Int 78 (2014) 160.

    Article  CAS  Google Scholar 

  4. Shoesmith D W, Noël J J, and Annamalai V E, Corrosion of Titanium and Its Alloys. Shreir’s Corrosion (2010) 2042.

  5. Farayibi P K, Folkes J, Clare A, and Oyelola O, Surf Coat Tech 206 (2011) 372.

    Article  CAS  Google Scholar 

  6. Huang C, Du L, and Zhang W, J Alloy Compd 479 (2009) 777.

    Article  CAS  Google Scholar 

  7. Staszuk M, Pakuła D, Chladek G, Pawlyta M, Pancielejko M, and Czaja P, Vacuum 154 (2018) 272.

    Article  CAS  Google Scholar 

  8. Jiang J, Feng C, Qian W, Zhu L, Han S, and Lin H, Mater Chem Phys 199 (2017) 239.

    Article  CAS  Google Scholar 

  9. Zhang L, Zhao Z, Bai P, Du W, Li Y, Yang X, and Wang Q, Mater Lett 270 (2020) 127711.

    Article  CAS  Google Scholar 

  10. Wang F, Mei J, Jiang H, and Wu X, Mater Sci Eng A 445-446 (2007) 461.

    Article  Google Scholar 

  11. Yanan L, Ronglu S, Wei N, Tiangang Z and Yiwen L, Opt Laser Eng 120 (2019) 84.

    Article  Google Scholar 

  12. Bai H, Li C, and Shi G Q, Adv Mater 23 (2011) 1089.

    Article  CAS  Google Scholar 

  13. Wang, Y X, Chou S L, Wexler D, Liu H K, and Dou S X, Chem-Eur J 20 (2014) 9607.

    Article  CAS  Google Scholar 

  14. Zhao Z, Bai P, Du W, Liu B, Pan D, Das R, Liu C, Guo Z, Carbon 170 (2020) 302-326.

    Article  CAS  Google Scholar 

  15. Li J -f, Zhang L, Xiao J -k, and Zhou K -c, T Nonferr Metal Soc 25 (2015) 3354.

  16. Vahedi F, Zarei-Hanzaki A, Salandari-Rabori A, Abedi H R, Razaghian A, and Minarik P, J Alloy Compd 815 (2020) 152231.

    Article  CAS  Google Scholar 

  17. Zhao Z Y, Zhao W J, Bai P K, Wu L Y, and Huo P C, Mater Lett 255 (2019) 126559.

    Article  CAS  Google Scholar 

  18. Zhao Z, Bai P, Misra R D K, Dong M, Guan R, Li Y, Zhang J, Tan L, Gao J, Ding T, Du W, and Guo Z, J Alloy Compd 792 (2019) 203.

    Article  CAS  Google Scholar 

  19. Zhang J, Chen Z, Wu H, Zhao J, Jiang Z, Surf Coat Tech 358 (2019) 907-912.

    Article  CAS  Google Scholar 

  20. Li J, Zhao Z, Bai P, Qu H, Liang M, Liao H, Wu L. Huo P, Materials 12 (2019) 950.

    Article  CAS  Google Scholar 

  21. Sun Y, Moroz A, Alrbaey K, J Mater Eng Perform 23 (2014) 518-526.

    Article  CAS  Google Scholar 

  22. Xu H, Xing H, Dong A, Du D, Wang D, Huang H, Zhu G, Shu D, Sun B, She H, Lai H, Chen K, Surf Coat Tech 363 (2019) 161-169.

    Article  CAS  Google Scholar 

  23. Bolzàn J A, Jàuregui E A, and Arvia A J, Electrochim Acta 8 (1963) 841.

    Article  Google Scholar 

  24. Cai L X, Wang H M, and Wang C M, Surf Coat Tech 182 (2004) 294.

    Article  CAS  Google Scholar 

  25. Wang B -b, Wang Z -y, Han W, Wang C, and Ke W, T Nonferr Metal Soc 23 (2013) 1199.

  26. He X, Song R G, Kong D J, Opt Laser Technol 112 (2019) 339-348.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant No. 51775521 and U1810112), the China Postdoctoral Science Foundation (2019M661068), the Key Research and Development Project of Shanxi Province (201903D121009), the Natural Science Foundation of Shanxi Province: 201801D221154, the Major Science and Technology Projects of Shanxi Province, China (No. 20181101009, 20181102012), Shanxi Foundation Research Projects for Application (201801D221234), Research Project Supported by Shanxi Scholarship Council of China (2019072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanyong Zhao or Peikang Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhao, Z., Bai, P. et al. Microstructure and Properties of In situ Synthesized TiC/Graphene/Ti6Al4V Composite Coating by Laser Cladding. Trans Indian Inst Met 74, 891–899 (2021). https://doi.org/10.1007/s12666-020-02149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02149-7

Keywords

Navigation