Skip to main content
Log in

Droplet capture with a wetted fiber

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The capture mechanism of fibrous filters in a wet condition is studied by focusing on the single droplet impact to an initial droplet attached to the fiber. High-speed photography and numerical simulation are conducted to study the collision phenomenon. The eccentricity between the mass center of the impacting droplet and the initial droplet is varied to evaluate the threshold capture velocity of the impacting droplet. The eccentricity is considered to be composed of two perpendicular components. The distance between the impacting droplet trajectory line and fiber axis is considered as one of the components of eccentricity (\(e_{1}\)). The distance between the mass center of the impacting droplet and the initial droplet along the fiber axis is defined as the other component of eccentricity (\(e_{2}\)). The initial droplet volume is also varied in our investigation. It is observed that increasing the initial droplet volume attached to the fiber as well as increasing the eccentricity \(e_{1}\) reduces the threshold capture velocity of the impacting droplet. However, increasing \(e_{2}\) increases the threshold capture velocity. Surprisingly, for an impacting droplet with a radius of R colliding with a small volume initial droplet of a radius of \(R_{i}\) at \(e_{2}> 0.85\) (\(R+R_{i}\)), the threshold capture velocity is found to be higher than that of a droplet impacting on a dry fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agranovski, I.E., Braddock, R.D.: Filtration of liquid aerosols on wettable fibrous filters. AIChE journal 44(12), 2775–2783 (1998)

    Article  Google Scholar 

  2. Bourrous, S., Bouilloux, L., Ouf, F.-X., Lemaitre, P., Nerisson, P., Thomas, D., Appert-Collin, J.: Measurement and modeling of pressure drop of HEPA filters clogged with ultrafine particles. Powder Technology 289, 109–117 (2016)

    Article  Google Scholar 

  3. Chattopadhyay, S., Hatton, T.A., Rutledge, G.C.: Aerosol filtration using electrospun cellulose acetate fibers. Journal of materials science 51(1), 204–217 (2016)

    Article  Google Scholar 

  4. Japuntich, D., Stenhouse, J., Liu, B.: Experimental results of solid monodisperse particle clogging of fibrous filters. Journal of aerosol science 25(2), 385–393 (1994)

    Article  Google Scholar 

  5. Thomas, D., Penicot, P., Contal, P., Leclerc, D., Vendel, J.: Clogging of fibrous filters by solid aerosol particles experimental and modelling study. Chemical Engineering Science 56(11), 3549–3561 (2001)

    Article  Google Scholar 

  6. Chernyakov, A., Kirsch, A., Kirsch, V.: Elastic vibrations of a fiber due to impact of an aerosol particle and their influence on the efficiency of fibrous filters. Physical Review E 83(5), 056303 (2011)

    Article  Google Scholar 

  7. Datta, S., Redner, S.: Gradient clogging in depth filtration. Physical Review E 58(2), R1203 (1998)

    Article  Google Scholar 

  8. Andan, S., Hariharan, S., Chase, G.: Continuum model evaluation of the effect of saturation on coalescence filtration. Separation science and technology 43(8), 1955–1973 (2008)

    Article  Google Scholar 

  9. Liew, T., Conder, J.: Fine mist filtration by wet filters–I. Liquid saturation and flow resistance of fibrous filters. Journal of Aerosol Science 16(6), 497–509 (1985)

    Article  Google Scholar 

  10. Conder, J., Liew, T.: Fine mist filtration by wet filters–II: Efficiency of fibrous filters. Journal of aerosol science 20(1), 45–57 (1989)

    Article  Google Scholar 

  11. Raynor, P.C., Leith, D.: The influence of accumulated liquid on fibrous filter performance. Journal of Aerosol Science 31(1), 19–34 (2000)

    Article  Google Scholar 

  12. Contal, P., Simao, J., Thomas, D., Frising, T., Callé, S., Appert-Collin, J., Bémer, D.: Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. Journal of Aerosol Science 35(2), 263–278 (2004)

    Article  Google Scholar 

  13. Bitten, J.F.: Coalescence of water droplets on single fibers. Journal of colloid and interface science 33(2), 265–271 (1970)

    Article  Google Scholar 

  14. Hung, L., Yao, S.: Experimental investigation of the impaction of water droplets on cylindrical objects. International journal of multiphase flow 25(8), 1545–1559 (1999)

    Article  Google Scholar 

  15. Patel, P.D., Shaqfeh, E.S., Butler, J.E., Cristini, V., Bławzdziewicz, J., Loewenberg, M.: Drop breakup in the flow through fixed fiber beds: an experimental and computational investigation. Physics of Fluids 15(5), 1146–1157 (2003)

    Article  Google Scholar 

  16. Duprat, C., Protiere, S., Beebe, A., Stone, H.A.: Wetting of flexible fibre arrays. Nature 482(7386), 510–513 (2012)

    Article  Google Scholar 

  17. Sauret, A., Bick, A.D., Duprat, C., Stone, H.A.: Wetting of crossed fibers: Multiple steady states and symmetry breaking. EPL (Europhysics Letters) 105(5), 56006 (2014)

    Article  Google Scholar 

  18. Chan, T.S., Yang, F., Carlson, A.: Directional spreading of a viscous droplet on a conical fibre. Journal of Fluid Mechanics 894, (2020)

  19. Pasandideh-Fard, M., Bussmann, M., Chandra, S.: Simulating droplet impact on a substrate of arbitrary shape, Atomization and sprays, 11(4), (2001)

  20. Lorenceau, É., Clanet, C., Quéré, D.: Capturing drops with a thin fiber. Journal of colloid and interface science 279(1), 192–197 (2004)

    Article  Google Scholar 

  21. Lorenceau, E., Clanet, C., Quéré, D., Vignes-Adler, M.: Off-centre impact on a horizontal fibre. The European Physical Journal-Special Topics 166(1), 3–6 (2009)

    Article  Google Scholar 

  22. Sher, E., Haim, L., Sher, I.: Off-centered impact of water droplets on a thin horizontal wire. International Journal of Multiphase Flow 54, 55–60 (2013)

    Article  Google Scholar 

  23. Piroird, K., Clanet, C., Lorenceau, É., Quéré, D.: Drops impacting inclined fibers. Journal of colloid and interface science 334(1), 70–74 (2009)

    Article  Google Scholar 

  24. Safavi, M., Nourazar, S.: Experimental, Numerical, and Analytical Study of a Droplet Impact on Parallel Fibers, Modares. Mechanical Engineering 19(7), 1645–1653 (2019)

    Google Scholar 

  25. Kim, S.-G., Kim, W.: Drop impact on a fiber. Physics of Fluids 28(4), 042001 (2016)

    Article  Google Scholar 

  26. Khalili, M., Yahyazadeh, H., Gorji-Bandpy, M., Ganji, D.: Application of volume of fluid method for simulation of a droplet impacting a fiber. Propulsion and Power Research 5(2), 123–133 (2016)

    Article  Google Scholar 

  27. Safavi, M., Nourazar, S.: Experimental, analytical, and numerical study of droplet impact on a horizontal fiber. International Journal of Multiphase Flow 113(1), 316–324 (2019)

    Article  Google Scholar 

  28. Dressaire, E., Sauret, A., Boulogne, F., Stone, H.A.: Drop impact on a flexible fiber. Soft matter 12(1), 200–208 (2016)

    Article  Google Scholar 

  29. Comtet, J., Keshavarz, B., Bush, J.W.: Drop impact and capture on a thin flexible fiber. Soft matter 12(1), 149–156 (2016)

    Article  Google Scholar 

  30. Liang, G., Guo, Y., Yang, Y., Shen, S.: Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces. International Communications in Heat and Mass Transfer 54, 67–74 (2014)

    Article  Google Scholar 

  31. Liang, G., Guo, Y., Yang, Y., Guo, S., Shen, S.: Special phenomena from a single liquid drop impact on wetted cylindrical surfaces. Experimental Thermal and Fluid Science 51, 18–27 (2013)

    Article  Google Scholar 

  32. Kothe, D., Rider, W., Mosso, S., Brock, J., Hochstein, J.: Volume tracking of interfaces having surface tension in two and three dimensions, in In: 34th Aerospace Sciences Meeting and Exhibit. p. 859, (1996)

  33. Zhang, X., Hashem, M.A., Chen, X., Tan, H.: On passing a non-Newtonian circulating tumor cell (CTC) through a deformation-based microfluidic chip. Theoretical and Computational Fluid Dynamics 32(6), 753–764 (2018)

    Article  MathSciNet  Google Scholar 

  34. Kistler, S.F.: Hydrodynamics of wetting. Wettability 6, 311–430 (1993)

    Google Scholar 

  35. Roenby, J., Bredmose, H., Jasak, H.: A computational method for sharp interface advection. Royal Society open science 3(11), 160405 (2016)

    Article  MathSciNet  Google Scholar 

  36. Roenby, J., Bredmose, H., Jasak, H.: Isoadvector: Free, fast and accurate vof on arbitrary meshes, in The 4th OpenFOAM User Conference, (2016)

  37. Roenby, J., Larsen, B. E., Bredmose, H., Jasak, H.: A new volume-of-fluid method in OpenFOAM, in VII International Conference on Computational Methods in Marine Engineering. Nantes: International Center for Numerical Methods in Engineering, pp 1-12, (2017)

  38. Chou, T.-H., Hong, S.-J., Liang, Y.-E., Tsao, H.-K., Sheng, Y.-J.: Equilibrium phase diagram of drop-on-fiber: Coexistent states and gravity effect. Langmuir 27(7), 3685–3692 (2011)

    Article  Google Scholar 

  39. Ashgriz, N., Poo, J.: Coalescence and separation in binary collisions of liquid drops. Journal of Fluid Mechanics 221, 183–204 (1990)

    Article  Google Scholar 

  40. Saroka, M.D., Ashgriz, N.: Separation Criteria for Off-Axis Binary Drop Collisions. Journal of Fluids 2015, (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Nourazar.

Additional information

Communicated by Tim Phillips.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safavi, M., Nourazar, S.S. Droplet capture with a wetted fiber. Theor. Comput. Fluid Dyn. 35, 331–343 (2021). https://doi.org/10.1007/s00162-021-00561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00561-3

Keywords

Navigation