Skip to main content
Log in

Automatic Detection of Occulted Hard X-Ray Flares Using Deep-Learning Methods

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a concept for a machine-learning classification of hard X-ray (HXR) emissions from solar flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), identifying flares that are either occulted by the solar limb or located on the solar disk. Although HXR observations of occulted flares are important for particle-acceleration studies, HXR data analyses for past observations were time consuming and required specialized expertise. Machine-learning techniques are promising for this situation, and we constructed a sample model to demonstrate the concept using a deep-learning technique. Input data to the model are HXR spectrograms that are easily produced from RHESSI data. The model can detect occulted flares without the need for image reconstruction nor for visual inspection by experts. A technique of convolutional neural networks was used in this model by regarding the input data as images. Our model achieved a classification accuracy better than 90%, and the ability for the application of the method to either event screening or for an event alert for occulted flares was successfully demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: 2015, TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org/.

  • Armstrong, J.A., Fletcher, L.: 2019, Fast solar image classification using deep learning and its importance for automation in solar physics. Solar Phys. 294, 80. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chollet, F.: 2015, keras, GitHub. github.com/fchollet/keras.

  • Christe, S., Glesener, L., Buitrago-Casas, C., Ishikawa, S.-N., Ramsey, B., Gubarev, M., Kilaru, K., Kolodziejczak, J.J., Watanabe, S., Takahashi, T., Tajima, H., Turin, P., Shourt, V., Foster, N., Krucker, S.: 2016, FOXSI-2: upgrades of the Focusing Optics X-ray Solar Imager for its second flight. J. Astron. Instrum. 5, 1640005. DOI. ADS.

    Article  Google Scholar 

  • Effenberger, F., Rubio da Costa, F., Oka, M., Saint-Hilaire, P., Liu, W., Petrosian, V., Glesener, L., Krucker, S.: 2017, Hard X-ray emission from partially occulted solar flares: RHESSI observations in two solar cycles. Astrophys. J. 835, 124. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gary, D.E., Chen, B., Dennis, B.R., Fleishman, G.D., Hurford, G.J., Krucker, S., McTiernan, J.M., Nita, G.M., Shih, A.Y., White, S.M., Yu, S.: 2018, Microwave and hard X-ray observations of the 2017 September 10 solar limb flare. Astrophys. J. 863, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grefenstette, B.W., Glesener, L., Krucker, S., Hudson, H., Hannah, I.G., Smith, D.M., Vogel, J.K., White, S.M., Madsen, K.K., Marsh, A.J., Caspi, A., Chen, B., Shih, A., Kuhar, M., Boggs, S.E., Christensen, F.E., Craig, W.W., Forster, K., Hailey, C.J., Harrison, F.A., Miyasaka, H., Stern, D., Zhang, W.W.: 2016, The first focused hard X-ray images of the Sun with NuSTAR. Astrophys. J. 826, 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: 2015a, Deep residual learning for image recognition. arXiv. ADS.

  • He, K., Zhang, X., Ren, S., Sun, J.: 2015b, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv. ADS.

  • Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, The RHESSI imaging concept. Solar Phys. 210, 61.

    Article  ADS  Google Scholar 

  • Ishikawa, S., Krucker, S., Takahashi, T., Lin, R.P.: 2011, On the relation of above-the-loop and footpoint hard X-ray sources in solar flares. Astrophys. J. 737, 48. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kingma, D.P., Ba, J.: 2014, Adam: a method for stochastic optimization. arXiv. ADS.

  • Krucker, S., Lin, R.P.: 2008, Hard X-ray emissions from partially occulted solar flares. Astrophys. J. 673, 1181. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Battaglia, M., Cargill, P.J., Fletcher, L., Hudson, H.S., MacKinnon, A.L., Masuda, S., Sui, L., Tomczak, M., Veronig, A.L., Vlahos, L., White, S.M.: 2008, Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155.

    Article  ADS  Google Scholar 

  • Krucker, S., Christe, S., Glesener, L., Ishikawa, S.-n., Ramsey, B., Takahashi, T., Watanabe, S., Saito, S., Gubarev, M., Kilaru, K., Tajima, H., Tanaka, T., Turin, P., McBride, S., Glaser, D., Fermin, J., White, S., Lin, R.: 2014, First images from the Focusing Optics X-Ray Solar Imager. Astrophys. J. Lett. 793, L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3.

    Article  ADS  Google Scholar 

  • Masuda, S., Kosugi, T., Hara, H., Sakao, T., Shibata, K., Tsuneta, S.: 1995, Hard X-ray sources and the primary energy-release site in solar flares. Publ. Astron. Soc. Japan 47, 677. ADS.

    ADS  Google Scholar 

  • Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: 2011, Malware images: visualization and automatic classification. In: Proc. 8th Internat. Symp. on Visualization for Cyber Security, VizSec ’11, Association for Computing Machinery, New York. 9781450306799. DOI.

    Chapter  Google Scholar 

  • Neuberg, B., Bose, S., Salvatelli, V., dos Santos, L.F.G., Cheung, M., Janvier, M., Gunes Baydin, A., Gal, Y., Jin, M.: 2019, Auto-calibration of remote sensing solar telescopes with deep learning. arXiv. ADS.

  • Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: 2018, Deep Flare Net (DeFN) model for solar flare prediction. Astrophys. J. 858, 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ovchinnikova, E.P., Charikov, Y.E., Shabalin, A.N.: 2019, X-ray of the 2017 September 10 solar flare. J. Phys. Conf. Ser. 1400, 022028. DOI. ADS.

    Article  Google Scholar 

  • Panos, B., Kleint, L.: 2020, Real-time flare prediction based on distinctions between flaring and non-flaring active region spectra. Astrophys. J. 891, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Park, E., Moon, Y.-J., Lee, J.-Y., Kim, R.-S., Lee, H., Lim, D., Shin, G., Kim, T.: 2019, Generation of solar UV and EUV images from SDO/HMI magnetograms by deep learning. Astrophys. J. Lett. 884, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: 2014, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929. jmlr.org/papers/v15/srivastava14a.html.

    MathSciNet  MATH  Google Scholar 

  • Xu, L., Sun, W., Yan, Y., Zhang, W.: 2020, Solar image deconvolution by generative adversarial network. arXiv. ADS.

Download references

Acknowledgments

We would like to thank Tomoe Hoshi for introducing an example of non-understandable image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-nosuke Ishikawa.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(H5 366.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, Sn., Matsumura, H., Uchiyama, Y. et al. Automatic Detection of Occulted Hard X-Ray Flares Using Deep-Learning Methods. Sol Phys 296, 39 (2021). https://doi.org/10.1007/s11207-021-01780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01780-x

Keywords

Navigation