Skip to main content
Log in

Strength Anisotropy of Compacted Sandy Material

  • EXPERIMENTAL INVESTIGATIONS
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

The paper presents the results of an experimental study of strength anisotropy in sandy samples with “anisotropic fabric” induced by compaction loading. A direct shear apparatus used is introduced. To prepare anisotropic samples, a specimen compacted to optimum water content was frozen. Six samples, each with a different shearing angle were then bored from the specimen. After boring, these samples were placed in a shear box and heated to melting. The maximum shear strength was observed for a sample with shearing angle +15°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Casagrande, A. and N. Carrillo, “Shear Failure of Anisotropic Materials,” Proceedings of the Boston Society of Civil Engineers, 31, 74-87 (1944).

  2. R. Brewer, Fabric and Mineral Analysis of Soils, John Wiley and Sons, Inc., New York (1964).

    Google Scholar 

  3. M. Oda and H. Nakayama, “Introduction of Inherent Anisotropy of Soils in the Yield Function,” Micromechanics of Granular Materials, 81-90 (1988).

  4. F. Tavenas and S. Leroueil, “Effects of Stress and Time on Yielding of Clays,” Proc. 9th ICSMFE, 1, 319-326 (1977).

  5. J. Graham, M. L. Noonan, and K. V. Lew, “Yield states and stress strain relationships in a natural plastic clay,” Can. Geotech. J., 20(3), 502-516 (1983).

    Article  Google Scholar 

  6. JGS0561, Direct Shear Test Method, Japanese Geotechnical Society Standard [in Japanese], Japanese Geotechnical Society (1979).

  7. J. M. Duncan and H. B. Seed, “Anisotropy and Stress Reorientation in Clay,” JSMFD, 92(SM5), 21-50 (1966).

    Google Scholar 

  8. R. J. Mitchell, “Some Deviation from Isotropy in a Lightly Overconsolidated Clay,” Geotechnique, 22(3), 459-467 (1972).

    Article  Google Scholar 

  9. A. S. Saada and G. F. Bianchini, “Strength of One-Dimensionally Consolidated Clay,” J. Geotech. Eng., 101(11), 1151-1164 (1975).

    Google Scholar 

  10. A. S. Balasubramaniam, “Some Factors Influencing the Stress-Strain Behavior of Clays,” Ph.D. thesis, University of Cambridge, UK (1969).

  11. C. C. Ladd, “Stress-Strain Behavior of Anisotropically Consolidated Clays During Undrained Shear,” Proc. 6th ICSMFE, 1, 282-286 (1965).

    Google Scholar 

  12. A. S. Stipho, “Theoretical and Experimental Investigation of the Behavior of Anisotropically Consolidated Kaolin,” Ph.D. thesis, University College, Cardiff, UK (1978).

  13. A. W. Bishop, “The strength of soils as engineering materials,” Geotechnique, 16(2), 89-130 (1966).

    Article  Google Scholar 

  14. L. D. Wesley, “Influence of Stress Path and Anisotropy on the Behavior of Soft Alluvial Clay,” Ph.D. thesis, University of London, UK (1975).

  15. L. Bjerrum, “Problems of soil mechanics and construction on soft clays and structurally unstable soils,” Proc. 8th ICSMFE, 3, 109-159 (1973).

    Google Scholar 

  16. C. C. Ladd, R. Foott, K. Ishihara, F. Schlosser, and H.G. Poulos, “Stress-deformation and strength characteristics,” Proc. 9th ICSMFE, 1, 421-494 (1977).

    Google Scholar 

  17. M. Mikasa, N. Takada, and A. Ohshima, “Anisotropy of undrained strength of one-dimensionally consolidated clay and natural deposits,” JSSMFE, 32(11), 25-30 (1984).

    Google Scholar 

  18. M. Mikasa, N. Takada, and A. Oshima, “In situ strength anisotropy of clay by direct shear test,” Proc. 8th ARC, 1, 61-64 (1987).

    Google Scholar 

  19. M. Mikasa, “Test apparatus and test procedures of Triaxial and direct shear testing,” Proc.10th Symposium on Soil Testing, JSSMFE, 117-123 (1965).

  20. S. Nishimura, N. A. Ming, and R. I. Jardine, “Shear strength anisotropy of natural London Clay,” Geotechnique, 57(1), 49-62 (2007).

    Article  Google Scholar 

  21. H. Hanzawa, T. Matsuno, and K. Tsuji, “Undrained strength and stability analysis of soft Iraqi clays,” Soils and Found., 19(2), 1-14 (1979).

    Article  Google Scholar 

  22. T. Shogaki and N. Kumagai, “A slope stability analysis considering undrained strength anisotropy of natural clay deposit,” Soils and Found., 48(6), 805-819 (2008).

    Article  Google Scholar 

  23. K. Weindieck, “Zur Struktur Koniger Medien,” Bautechnik, 6, 196-199 (1967).

    Google Scholar 

  24. A. K. Parkin and C. M. Gerrad, “Discussion on deformation of sand in shear,” JSMFD, ASCE, 94(SM1), 336-340 (1968).

    Google Scholar 

  25. J. R. F. Arthur and B. K. Menzies, “Inherent anisotropy in a sand,” Geotechnique, 22(1), 115-128 (1972).

    Article  Google Scholar 

  26. M. Oda, “Initial fabrics and their relations to mechanical properties of granular materials,” Soils Found., 12(1), 17-36 (1972a).

    Article  Google Scholar 

  27. M. Oda, “Deformation mechanism of sand in triaxial compression tests,” Soils Found., 12(4), 45-63 (1972).

    Article  Google Scholar 

  28. M. Oda, “The mechanism of fabric changes during compressional deformation of sand,” Soils Found., 12(2), 1-18 (1972).

    Article  Google Scholar 

  29. A. A. EL-Sohby and K. Z. Andrawes, “Experimental examination of sand anisotropy,” Proc. 8th ICSMFE, 1, 103-109 (1973).

    Google Scholar 

  30. J. R. F. Arthur and A. B. Phillips, “Homogeneous and layered sand in triaxial compression,” Geotechnique, 25(4), 799-815 (1975).

    Article  Google Scholar 

  31. M. Oda, I. Koishikawa, and T. Higuchi, (1978), “Experimental study of anisotropic shear strength of sand by plane strain test,” Soils Found., 18(1), 25-38 (1978)

  32. Y. Yamada and K. Ishihara, “Anisotropic deformation characteristics of sand under three-dimensional stress conditions,” Soils Found., 19(2), 79-94 (1979).

    Article  Google Scholar 

  33. Y. Yamada and K. Ishihara, “Undrained deformation characteristics of loose sand under three-dimensional stress conditions,” Soils Found., 21(1), 97-107 (1981).

    Article  Google Scholar 

  34. M. Oda, “Anisotropic strength of cohesionless sands,” J. Geotech. Eng. Div., ASCE, 107(9), 1219-1231 (1981).

    Article  Google Scholar 

  35. M. Oda and I. Koishikawa. “Anisotropic fabric in sands,” Proc. 9th ICSMFE, 1, 235-238 (1977).

    Google Scholar 

  36. P. V. Lade and A. V. Abelev, “Characterization of Cross-Anisotropic Soil Deposits from Isotropic compression tests,” Soils Found., 45(5), 89-102 (2005).

    Article  Google Scholar 

  37. H. Matsuoka and H. Ishizaki, “Deformation and strength of anisotropic soil.” Proc. Int. Conf. Soil Mech. Found. Eng. 10, Stockholm, 1, 699-702 (1981).

  38. P. I. Lewin, Y. Yamada, and K. Ishihara, “Correlated drained and undrained 3D tests on loose sand,” IUTAM Conf. Deformation and Failure of Granular Materials, Delft, Balkema, Rotterdam, 419-429 (1982).

  39. H. Ochiai and P. V. Lade, “Three-dimensional behavior of sand with anisotropic fabric.” J. Geotech. Eng., ASCE, 109(10), 1313-1328 (1983).

    Article  Google Scholar 

  40. R. K. S. Wong and J. R. F. Arthur, “Induced and inherent anisotropy in sand,” Geotechnique, 35(4), 471-481 (1985).

    Article  Google Scholar 

  41. Y. Nakata, M. Hyodo, H. Murata, and N. Yasufuku, “Flow deformation of sands subjected to principal stress rotation,” Soils Found., 38(2), 115-128 (1998).

    Article  Google Scholar 

  42. M. Yoshimine, K. Ishihara, and W. Vargas, “Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand,” Soils Found., 38(3), 179-188 (1998).

    Article  Google Scholar 

  43. E. Masad and B. Muhunthan, “Three-dimensional characterization and simulation of anisotropic soil fabric,” J. Geotech. Geoenv. Eng., 126(3), 199-207 (2000).

    Article  Google Scholar 

  44. A. V. Abelev and P. V. Lade, “Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress - strain behavior and shear banding.” J. Eng. Mech., 129(2), 160-166 (2002).

    Article  Google Scholar 

  45. P. V. Lade and A. V. Abelev, “Effects of cross anisotropy on three-dimensional behavior of sand. II: Volume change behavior and failure.” J. Eng. Mech., ASCE, 129(2), 167-174 (2002).

    Article  Google Scholar 

  46. K. Tanimoto, “Preliminary study of the correlation of SPT N-values with the velocity of shear waves in sands,” Construction Engineering Research Institute Foundation, Report 16, 103-111 (1974).

    Google Scholar 

  47. X. Zeng and B. Ni, “Stress-induced Anisotropic G max of sands and its measurement,” J. Geotech. Geoenviron. Eng., 125 (9), 741-749 (1999) .

    Article  Google Scholar 

  48. R. Kuwano, “The stiffness and yield”ing anisotropy of sand,” PhD. thesis, Imperial College of Science, University of London, United Kingdom (1999).

  49. N. Takada, “Mikasa's Direct Shear apparatus, Test Procedures and Results,” Geotech. Testing J., 16 (3), 314-322 (1993).

    Article  Google Scholar 

  50. H. Ishikawa, Y. Liu, A. Mochizuki, S. Okada, and S. Sreng, “Development of a direct shear apparatus with a double-jacks system and the effect of the double-jacks system,” Japan. Geotech. J., 4(1), 11-19 (2009).

    Google Scholar 

  51. A. Zh. Zhussupbekov, S. B. Yenkebaev, R. Ye. Lukpanov, and A. S. Tulebekova, “Analysis of the settlement of pile foundations under soil conditions of Astana,” Soil Mech. Found. Eng., 49(3), 99-104 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tanyrbergenova.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 6, p. 25, November-December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochizuki, A., Zhussupbekov, A., Fujisawa, J. et al. Strength Anisotropy of Compacted Sandy Material. Soil Mech Found Eng 57, 480–490 (2021). https://doi.org/10.1007/s11204-021-09696-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-021-09696-1

Navigation