Skip to main content
Log in

On the Influence of Propagation Properties of Whistler-Mode Waves in the Earth’s Magnetosphere on Their Cyclotron Amplification

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the properties of the cyclotron amplification of whistler-mode waves during their propagation in the Earth’s magnetosphere in the presence of large-scale density inhomogeneities such as the plasmapause or density ducts. Wave propagation is considered within the framework of the geometrical optics with the use of cold plasma density profiles measured onboard the Van Allen Probes satellites. Wave amplitude variation due to the cyclotron interactions with energetic electrons having an anisotropic distribution function is studied. The cyclotron growth rate is calculated along the wave trajectory taking into account the wave vector variation for a given analytical distribution function of energetic electrons. We show that in the case of guided propagation in a density duct or near the plasmapause the frequency dependences of the one-hop wave gain and the local growth rate in the equatorial region approximately coincide with each other for low initial wave normal angles (|Θ0| ≲ 30°) and relatively low energies (W0 ≲ 15 keV). The amplification band expands towards the higher frequencies for higher initial propagation angles and electron energies. In the case of nonducted propagation, the efficiency of cyclotron interactions is notably lower, and the frequency dependences of the one-hop wave gain and the equatorial growth rate differ: the waves having the initial wave angle directed towards the Earth are stronger amplified, and this asymmetry increases with increasing electron energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Shklyar and M. A. Balikhin, J. Geophys. Res. Space Phys., 122, No. 10, 10072–10083 (2017). https://doi.org/10.1002/2017JA024416

    Article  ADS  Google Scholar 

  2. F. Jiřičhek, D. R. Shklyar, and P. Třiska, Ann. Geophys., 19, No. 2, 147–157 (2001). https://doi.org/10.5194/angeo-19-147-2001

    Article  ADS  Google Scholar 

  3. M. Parrot, O. Santolík, N. Cornilleau-Wehrlin, et al., Ann. Geophys., 21, No. 5, 1111–1120 (2003). https://doi.org/10.5194/angeo-21-1111-2003

  4. J. Chum, O. Santolík, A. W. Breneman, et al., J. Geophys. Res. Space Phys., 112, No. A6, A06206 (2007). https://doi.org/10.1029/2006JA012061

  5. J. Chum, O. Santolík, and M. Parrot, J. Geophys. Res. Space Phys., 114, No. A2, A02307 (2009). https://doi.org/10.1029/2008JA013585

    Article  ADS  Google Scholar 

  6. A. W. Breneman, C. A. Kletzing, J. Pickett, et al., J. Geophys. Res. Space Phys., 114, No. A6, A06202 (2009). https://doi.org/10.1029/2008JA013549

  7. C. Martinez-Calderon, K. Shiokawa, Y. Miyoshi, et al., J. Geophys. Res. Space Phys., 121, No. 6, 5384–5393 (2016). https://doi.org/10.1002/2015JA022264

  8. D. P. Hartley, C. A. Kletzing, O. Santolík, et al., J. Geophys. Res. Space Phys., 123, No. 4, 2605–2619 (2018). https://doi.org/10.1002/2017JA024593

  9. J. Chum and O. Santolík, Ann. Geophys., 23, No. 12, 3727–3738 (2015). https://doi.org/10.5194/angeo-23-3727-2005

    Article  ADS  Google Scholar 

  10. O. Santolík, J. Chum, M. Parrot, et al., J. Geophys. Res. Space Phys., 111, No. A10, A10208 (2006). https://doi.org/10.1029/2005JA011462

  11. D. R. Shklyar, J. Geophys. Res. Space Phys., 122, No. 1, 640–655 (2017). https://doi.org/10.1002/2016JA023263

    Article  ADS  Google Scholar 

  12. J. Bortnik, U. S. Inan, and T. F. Bell, Geophys. Res. Lett., 33, No. 3, L03102 (2006). https://doi.org/10.1029/2005GL024553

  13. J. Bortnik, R. M. Thorne, N. P. Meredith, and O. Santolík, Geophys. Res. Lett ., 34, No. 15, L15109 (2007). https://doi.org/10.1029/2007GL030040

  14. M. Hanzelka and O. Santolík, Geophys. Res. Lett., 46, No. 11, 5735–5745 (2019). https://doi.org/10.1029/2019GL083115

  15. D. L. Pasmanik and A. G. Demekhov, J. Geophys. Res. Space Phys., 122, No. 8, 8124–8135 (2017). https://doi.org/10.1002/2017JA024118

    Article  ADS  Google Scholar 

  16. D. R. Shklyar, J. Chum, and F. Jiříček, Ann. Geophys., 22, No. 10, 3589–3606 (2004). https://doi.org/10.5194/angeo-22-3589-2004

    Article  ADS  Google Scholar 

  17. D. L. Pasmanik and A. G. Demekhov, Cosmic Res., 52, No. 1, 72–74 (2014). https://doi.org/10.1134/S0010952514010079

    Article  Google Scholar 

  18. C. A. Kletzing, W. S. Kurth, M. Acuna, et al., Space Sci. Rev., 179, 127–181 (2013). https://doi.org/10.1007/s11214-013-9993-6

  19. V. I. Karpman and R. N. Kaufman, J. Plasma Phys., 27, No. 2, 225–238 (1982). https://doi.org/10.1017/S0022377800026556

    Article  ADS  Google Scholar 

  20. V. I. Semenova and V. Yu. Trakhtengerz Geomagn. Aéron., 10, No. 6, 1021–1027 (1980).

    ADS  Google Scholar 

  21. B. V. Lundin, Geomagn. Aéron., 27, No. 2, 274–278 (1987).

    ADS  Google Scholar 

  22. P. A. Bespalov and V. Yu. Trakhtengerts, Alfvén Masers [in Russian], Inst. Appl. Phys. Acad. Sci. SSSR, Gorky (1986).

  23. D. R. Shklyar, Geomagn. Aeron., 45, No. 4, 474–487 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Pasmanik.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 4, pp. 267–284, April 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasmanik, D.L., Demekhov, A.G. On the Influence of Propagation Properties of Whistler-Mode Waves in the Earth’s Magnetosphere on Their Cyclotron Amplification. Radiophys Quantum El 63, 241–256 (2020). https://doi.org/10.1007/s11141-021-10049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10049-z

Navigation