Skip to main content
Log in

Influence of Graphene Coating of the Elements in a Two-Dimensional Parabolic Mirror Consisting of Parallel Cylinders on Radio Wave Focusing

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We model the diffraction of a plane TE-polarized electromagnetic wave by a parabolic structure consisting of N parallel circular cylinders, where N ∼ 50. The problem of diffraction of a plane wave by a cylinder with arbitrary coordinates of its center is solved. The coupling of individual structural elements is not allowed for in the performed calculations. The field behavior in the vicinity of the focus of the considered parabolic antenna is studied for cylinders made of a dielectric, a dielectric with a graphene monolayer, and perfectly conducting cylinders. It is found that a layer of graphene can lead to an almost twofold increase in the maximum amplitude of the field in the focus, which makes the focusing properties of the dielectric antenna rather close to those of an antenna consisting of perfectly conducting cylinders. It is shown that the field amplitude in the focus oscillates strongly as the frequency increases, and the focus itself moves slightly off the center of the reflector system. The size of the focal spot is studied as a function of the incident-field frequency, cylinder radii, and the distance between the individual reflectors. It is shown that the field in the vicinity of the considered structure has certain features, such as slow and fast oscillations of the field amplitude, which occur as the frequency of the incident wave varies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwarzschild, Math. Ann., 55, 177–247 (1901). https://doi.org/10.1007/BF01444971

    Article  MathSciNet  Google Scholar 

  2. H. Hönl, A.W.Maue, and K. Westpfahl, Theorie der Beugung, Springer-Verlag, Berlin (1961).

    Google Scholar 

  3. V. Twersky, J. Appl. Phys., 23, No. 10, 1099–1118 (1952). https://doi.org/10.1063/1.1701993

    Article  ADS  MathSciNet  Google Scholar 

  4. V. Twersky, IRE Trans. Antennas Propag., 10, No. 6, 737–765 (1962). https://doi.org/10.1109/TAP.1962.1137940

    Article  ADS  Google Scholar 

  5. R. V. Row, J. Appl. Phys., 26, No. 6, 666–675 (1955). https://doi.org/10.1063/1.1722068

    Article  ADS  Google Scholar 

  6. A. V. Nevedomskiy, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 1, 112–119 (1980).

  7. G.O.Olaofe, Radio. Sci., 5, No. 11, 1351–1360 (1970). https://doi.org/10.1029/RS005i011p01351

    Article  ADS  Google Scholar 

  8. H. A. Ragheb and M. Hamid, Int. J. Electron., 59, No. 4, 407–421 (1985). https://doi.org/10.1080/00207218508920712

    Article  Google Scholar 

  9. J. R. Wait, Introduction to Antennas and Propagation, Peter Peregrinus, London (1986).

    Google Scholar 

  10. E. A. Ivanov, Diffraction of Electromagnetic Waves on Two Bodies, NASA, Washington (1970).

    Google Scholar 

  11. E. L. Shenderov, Wave Problems of Hydroacoustic [in Russian], Sudostroenie, Lenindgrad (1972).

    Google Scholar 

  12. L. A. Tolokonnikov and A. A. Logvinova, Bull. Tula State Univ., Natural Sci., No. 1, 54–66 (2015).

  13. D. M. Natarov, V.O. Belobrov, R. Sauleau, et al., Opt. Express, 19, No. 22, 22176–22190 (2011). https://doi.org/10.1364/OE.19.022176

    Article  ADS  Google Scholar 

  14. D. M. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich, Plasmonics, 9, No. 2, 389–407 (2014). https://doi.org/10.1007/s11468-013-9636-5

    Article  Google Scholar 

  15. E. A. Velichko and A. P. Nikolaenko, Radiofiz. Élektron., 1(15), No. 3, 17–24 (2010).

    Google Scholar 

  16. E. A. Velichko and A. P. Nikolaenko, Radiofiz. Élektron., 14, No. 1, 11–18 (2009).

    Google Scholar 

  17. E. A. Velichko, J. Opt., 18, No. 3, 035008 (2016). https://doi.org/10.1088/2040-8978/18/3/035008

    Article  ADS  Google Scholar 

  18. Y. Gao, G. Ren, B. Zhu, et al., Opt. Express., 22, No. 20, 24322–24331 (2014). https://doi.org/10.1364/OE.22.024322

    Article  ADS  Google Scholar 

  19. E. A. Velichko and A. P. Nikolaenko, Radiophys. Quantum Electron., 57, No. 1, 43–51 (2014). https://doi.org/10.1007/s11141-014-9492-y

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Velichko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 4, pp. 297–308, April 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, E.A., Nickolaenko, A.P. Influence of Graphene Coating of the Elements in a Two-Dimensional Parabolic Mirror Consisting of Parallel Cylinders on Radio Wave Focusing. Radiophys Quantum El 63, 268–278 (2020). https://doi.org/10.1007/s11141-021-10051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10051-5

Navigation