Skip to main content
Log in

Robust finite-time tracking for a square fully actuated class of nonlinear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the robust finite-time tracking problem is addressed for a square fully actuated class of nonlinear systems subjected to disturbances and uncertainties. Firstly, two applicable lemmas are derived and novel nonlinear sliding surfaces (manifolds) are defined by applying these lemmas. Secondly, by developing the nonsingular terminal sliding mode control, two different types of robust nonlinear control inputs are designed to meet and accomplish the aforementioned finite-time tracking objective. The global finite-time stability of the closed-loop nonlinear system is evaluated analytically and mathematically. The proposed control inputs are utilized to tackle and solve two interesting issues containing (a): the finite-time tracking problem of the unified chaotic system and (b): the finite-time synchronization of two non-identical hyperchaotic systems. Finally, based on MATLAB software, two numerical simulations are carried out to illustrate and demonstrate the effectiveness and performance of the proposed robust finite-time nonlinear control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abooee, A., Arefi, M.M.: Robust finite-time stabilizers for five-degree-of-freedom active magnetic bearing system. J. Franklin Inst. 356, 80–102 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sun, L., Li, M., Wang, M., Yin, W., Sun, N., Liu, J.: Continuous finite-time output torque control approach for series elastic actuator. Mech. Syst. Signal Process. 139, 1–12 (2020)

    Article  Google Scholar 

  3. Li, H., Zhao, S., He, W., Lu, R.: Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zavala-río, A., Zamora-gómez, G.I.: Local-homogeneity-based global continuous control for mechanical systems with constrained inputs: finite-time and exponential stabilization. Int. J. Control 90, 1037–1051 (2017)

    Article  MATH  Google Scholar 

  5. Lee, D., Sanyal, A.K., Butcher, E.A., Scheeres, D.J.: Finite-time control for spacecraft body-fixed hovering over an asteroid. IEEE Trans. Aerosp. Electron. Syst. 51, 506–520 (2015)

    Article  Google Scholar 

  6. Cai, M., Xiang, Z., Guo, J.: Adaptive finite-time control for uncertain nonlinear systems with application to mechanical systems. Nonlinear Dyn. 84, 943–958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43, 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continous autonomous systems. SIAM J. Control Optim. 38, 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17, 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Su, Y.: Global continuous finite-time tracking of robot manipulators. Int. J. Robust Nonlinear Control 19, 1871–1885 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ou, M., Du, H., Li, S.: Finite-time tracking control of multiple nonholonomic mobile robots. J. Frankl. Inst. 349, 2834–2860 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, H., Wang, X., Zhang, T.: Robust finite-time stability control of a class of high-order uncertain nonlinear systems. Asian J. Control 17, 1081–1087 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao, Y., Sheng, Y., Liu, X.: Impact angle constrained guidance for all-aspect interception with function-based finite-time sliding mode control. Nonlinear Dyn. 85, 1791–1804 (2016)

    Article  MATH  Google Scholar 

  14. Xu, B., Zhou, D., Sun, S.: Finite time sliding sector guidance law with acceleration saturation constraint. IET Control Theory Appl. 10, 789–799 (2016)

    Article  MathSciNet  Google Scholar 

  15. Bernuau, E., Perruquetti, W., Efimov, D., Moulay, E.: Robust finite-time output feedback stabilisation of the double integrator. Int. J. Control 88, 451–460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shang, S., Xin, Y., Suiyang, K.: Robust finite-time tracking control of nonholonomic mobile robots without velocity measurements. Int. J. Control 89, 411–423 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Abooee, A., Yaghini-Bonabi, H.A., Jahed-Motlagh, M.R.: Analysis and circuitry realization of a novel three-dimensional chaotic system. Commun. Nonlinear Sci. Numer. Simul. 18, 1235–1245 (2013)

    Article  MathSciNet  Google Scholar 

  18. Abooee, A., Arefi, M.M., Member, S.: Robust finite-time stabilizers for a connected chain of nonlinear double-integrator systems. IEEE Syst. J. 13, 833–841 (2019)

    Article  Google Scholar 

  19. Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80, 669–683 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hua, C., Li, Y., Wang, H., Guan, X.: Decentralised fault-tolerant finite-time control for a class of interconnected non-linear systems. IET Control Theory Appl. 9, 2331–2339 (2015)

    Article  MathSciNet  Google Scholar 

  21. Parsegov, S.E., Polyakov, A.E., Shcherbakov, P.S.: Fixed-time consensus algorithm for multi-agent systems with integrator dynamics. IFAC Proc. 46, 110–115 (2013)

    Article  Google Scholar 

  22. Wang, H., Chen, B., Lin, C., Sun, Y., Wang, F.: Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation. IET Control Theory Appl. 11, 677–684 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wang, N., Karimi, H.R., Li, H., Su, S.: Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach. IEEE/ASME Trans. Mechatron. 24, 1064–1074 (2019)

    Article  Google Scholar 

  24. Zhang, N., Gai, W., Zhong, M., Zhang, J.: A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance. Aerosp. Sci. Technol. 86, 204–214 (2019)

    Article  Google Scholar 

  25. Yang, Z., Sugiura, H.: Robust nonlinear control of a three-tank system using finite-time disturbance observers. Control Eng. Pract. 84, 63–71 (2019)

    Article  Google Scholar 

  26. Lu, K., Xia, Y.: Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm. IET Control Theory Appl. 8, 1465–1477 (2014)

    Article  Google Scholar 

  27. Ding, S.X., Li, L., Basin, M., Krueger, M.: Finite-time-convergent fault-tolerant control for dynamical systems and its experimental verification for DTS200 three-tank system. IET Control Theory Appl. 9, 1670–1675 (2015)

    Article  MathSciNet  Google Scholar 

  28. He, S., Wang, J., Lin, D.: Robust missile autopilots with finite time convergence. Asian J. Control 18, 1010–1019 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bhat, S.P., Bernstein, D.S.: Finite-time stability of homogeneous systems. In: Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), Albuquerque, NM, USA. pp. 2513–2514 (1997)

  30. Li, P., Zheng, Z.: Global finite-time stabilization of planar nonlinear systems with disturbance. Asian J. Control 14, 851–858 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Polyakov, A., Poznyak, A.: Lyapunov function design for finite-time convergence analysis: ‘“Twisting”’ controller for second-order sliding mode realization. Automatica 45, 444–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem. IEEE Trans. Automat. Control 46, 305–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, J., Shi, P., Zhao, L.: Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173–180 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shihng, D., Chunjiang, Q., Shihua, L., Qi, L.: Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations. Int. J. Robust Nonlinear Control 21, 271–294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Utkin, V.: On convergence time and disturbance rejection of super-twisting control. IEEE Trans. Automat. Control 58, 2013–2017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Basin, M., Rodriguez-ramirez, P., Garza-alonso, A.: Continuous fixed-time convergent super-twisting algorithm in case of unknown state and disturbance initial conditions. Asian J. Control 21, 323–338 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Basin, M., Shtessel, Y., Aldukali, F.: Continuous finite- and fixed-time regulators. In: 2016 14th International Workshop on Variable Structure Systems (VSS), Nanjing. pp. 120–125 (2016)

  38. Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50, 984–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Basin, M.: Finite- and fixed-time convergent algorithms: design and convergence time estimation. Annu. Rev. Control 48, 209–221 (2019)

    Article  MathSciNet  Google Scholar 

  40. Bi, F.Y., Wei, Y.J., Zhang, J.Z., Cao, W.: Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents. IET Control Theory Appl. 4, 2369–2380 (2010)

    Article  MathSciNet  Google Scholar 

  41. Zhao, W., Shihua, L., Shumin, F.: Finite time tracking control of a nonholonomic mobile robot. Asian J. Control 11, 344–357 (2009)

    Article  MathSciNet  Google Scholar 

  42. Tang, X., Zhai, D., Li, X.: Adaptive fault-tolerance control based finite-time backstepping for hypersonic flight vehicle with full state constrains. Inf. Sci. (Ny) 507, 53–66 (2020)

    Article  MathSciNet  Google Scholar 

  43. Labbadi, M., Cherkaoui, M.: Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 93, 1–14 (2019)

    Article  Google Scholar 

  44. Behnamgol, V., Vali, A.R., Mohammadi, A.: A new adaptive finite time nonlinear guidance law to intercept maneuvering targets. Aerosp. Sci. Technol. 68, 416–421 (2017)

    Article  Google Scholar 

  45. Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Control 51, 858–862 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Parsegov, S., Polyakov, A., Shcherbakov, P.: Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. In: 51st IEEE Conference on Decision Control. December 1, pp. 7732–7737 (2012)

  47. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, H., Han, Z., Xie, Q.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dyn. 55, 323–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Jahed-Motlagh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharizade Bafghi, H., Jahed-Motlagh, M.R., Abooee, A. et al. Robust finite-time tracking for a square fully actuated class of nonlinear systems. Nonlinear Dyn 103, 1611–1625 (2021). https://doi.org/10.1007/s11071-020-06187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06187-0

Keywords

Navigation