Skip to main content
Log in

Regularity of the Inertial Manifolds for Evolution Equations in Admissible Spaces and Finite-Dimensional Feedback Controllers

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Our main aims in this paper are to investigate the regularity of inertial manifolds for non-autonomous semi-linear evolution equations and to give an application of inertial manifolds to a feedback control problem. We first prove that the inertial manifolds are smooth if the nonlinear term is smooth. Then, using the theory of inertial manifolds for non-autonomous semi-linear evolution equations, we construct a feedback controller for a class of control problems for the one-dimensional reaction-diffusion equations with the Lipschitz coefficient of the nonlinear term which may depend on time and belong to an admissible space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh CT, Hieu LV, Nguyen T. Inertial manifolds for a class of non-autonomous semilinear parabolic equations with finite delay. Discrete Continuous Dynam Sys 2013;33:483–503.

    Article  MathSciNet  Google Scholar 

  2. Bisconti L, Catania D. On the existence of an inertial manifold for a deconvolution model of the 2D mean Boussinesq equations. Math Methods Appl Sci 2018; 41(13):4923–35.

    Article  MathSciNet  Google Scholar 

  3. Boutet de Monvel L, Chueshov ID, Rezounenko AV. Inertial manifolds for retarded semilinear parabolic equations. Nonlinear Anal 1998;34:907–925.

    Article  MathSciNet  Google Scholar 

  4. Chueshov ID. 2002. Introduction to the theory of infinite-dimensional dissipative systems. ACTA Scientific Publishing House.

  5. Chueshov ID, Scheutzow M. Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations. J Dyn Diff Equat 2001; 13:355–380.

    Article  MathSciNet  Google Scholar 

  6. Chow SN, Lu K. Invariant manifolds for flows in Banach spaces. J Differ Equat 1988;74:285–317.

    Article  MathSciNet  Google Scholar 

  7. Constantin P, Foias C, Nicolaenko B, Temam R. Integral manifolds and inertial manifolds for dissipative partial differential equations. Berlin: Springer; 1989.

    Book  Google Scholar 

  8. Debussche A, Temam R. Inertial manifolds and the slow manifolds in meteorology. Differ Integral Equat 1991;4:897–931.

    MathSciNet  MATH  Google Scholar 

  9. Debussche A, Temam R. Inertial manifolds with delay. Appl Math Lett 1995;8:21–24.

    Article  MathSciNet  Google Scholar 

  10. Debussche A, Temam R. Some new generalizations of inertial manifolds. Discret Cont Dynam Sys 1996;2:543–558.

    Article  MathSciNet  Google Scholar 

  11. Foias C, Sell GR, Temam R. Varié,tés inertielles des équations différentielles dissipatives. Comptes Rendus de l’Académie des Sciences – Series I – Mathematics 1985;301:139–141.

    MATH  Google Scholar 

  12. Foias C, Nicolaenko B, Sell GR, Temam R. Varieties inertielles pour l’equation de Kuramoto-Sivashinsky (Inertial manifolds for the Kuramoto-Sivashinsky equation). Comptes Rendus de l’Acadé,mie des Sciences – Series I – Mathematics 1985;301:285–288.

    MATH  Google Scholar 

  13. Foias C, Sell GR, Temam R. Inertial manifolds for nonlinear evolutionary equations. J Differ Equat 1988;73:309–353.

    Article  MathSciNet  Google Scholar 

  14. Foias C, Sell GR, Titi ES. Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J Dyn Diff Equat 1989;1: 199–244.

    Article  MathSciNet  Google Scholar 

  15. Gal CG, Guo Y. Inertial manifolds for the hyperviscous Navier-Stokes equations. J Differ Equat 2020;265(9):4335–74.

    Article  MathSciNet  Google Scholar 

  16. Goritskiǐ AY, Chepyzhov VV. The dichotomy property of solutions of quasilinear equations in problems on inertial manifolds. Sbornik: Mathematics 2005; 196:485–511. translation from Matematicheskii Sbornik 196 (2005), 23–50.

    Article  MathSciNet  Google Scholar 

  17. Guckenheimer J, Holmes PJ. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer; 1983.

    Book  Google Scholar 

  18. Koksch N, Siegmund S. Pullback attracting inertial manifols for nonautonomous dynamical systems. J Dyn Diff Equat 2002;14:889–941.

    Article  Google Scholar 

  19. Koksch N, Siegmund S. Feedback control via inertial manifolds for nonautonomous evolution equations. Commun Pure Appl Anal 2011;10(3):917–936.

    Article  MathSciNet  Google Scholar 

  20. Kostianko A, Zelik S. Inertial manifolds for 1D reaction-diffusion-advection systems. Part i: Dirichlet and Neumann boundary conditions. Commun Pure Appl Anal 2017;16(6):2357–2376.

    Article  MathSciNet  Google Scholar 

  21. Kostianko A, Zelik S. Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: periodic boundary conditions. Commun Pure Appl Anal 2018;17(1):285–317.

    Article  MathSciNet  Google Scholar 

  22. Mallet-Paret J, Sell GR. Inertial manifolds for reaction-diffusion equations in higher space dimensions. J Am Math Soc 1988;1:805–866.

    Article  MathSciNet  Google Scholar 

  23. Miklavčič M. A sharp condition for existence of an inertial manifold. J Dyn Diff Equat 1991;3:437–456.

    Article  MathSciNet  Google Scholar 

  24. Murray JD. Mathematical biology I: an Introduction. Berlin: Springer; 2002.

    Book  Google Scholar 

  25. Murray JD. Mathematical biology II: spatial models and biomedical applications. Berlin: Springer; 2003.

    Book  Google Scholar 

  26. Nguyen TH. Inertial manifolds for semi-linear parabolic equations in admissible spaces. J Math Anal Appl 2012;386:894–909.

    Article  MathSciNet  Google Scholar 

  27. Nguyen TH. Admissibly inertial manifolds for a class of semi-linear evolution equations. J Diff Equat 2013;254:638–2660.

    Article  MathSciNet  Google Scholar 

  28. Nguyen TH, Bui X-Q. Competition models with diffusion, analytic semigroups, and inertial manifolds. Math Methods Appl Sci 2018;41(17):8182–8200.

    Article  MathSciNet  Google Scholar 

  29. Palis J, deMelo W. Geometric theory of dynamical systems: an introduction. New York: Springer; 1982.

    Book  Google Scholar 

  30. Rosa R. Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee–Infante equation. J Dyn Diff Equat 2003;15(1): 61–86.

    Article  MathSciNet  Google Scholar 

  31. Rosa R, Temam R. Inertial manifolds and normal hyperbolicity. Acta Applicandae Mathematica 1996;45(1):1–50.

    Article  MathSciNet  Google Scholar 

  32. Rosa R, Temam R. Finite-dimensional feedback control of a scalar reaction-diffusion equation via inertial manifold theory, Foundations of Computational Mathematics. Selected papers of a conference held at Rio de Janeiro, January 1997. In: Cucker F and Shub M, editors; 1997.

  33. Sano H, Kunimatsu N. Feedback control of semilinear diffusion systems: inertial manifolds for closed-loop systems. IMA J Math Control Inf 1994;11(1):75–92.

    Article  MathSciNet  Google Scholar 

  34. Sell GR, You Y. Inertial manifolds: the non-self-adjoint case. J Diff Equat 1992;96:203–255.

    Article  Google Scholar 

  35. Sell GR, You Y, Vol. 143. Dynamics of evolutionary equations, applied mathematical sciences. Berlin: Springer; 2002.

    Book  Google Scholar 

  36. Shvartsman SY, Theodoropoulos C, Rico-Martinez R, Kevrekidis IG, Titi ES, Mountziaris TJ. Order reduction for nonlinear dynamic models of distributed reacting systems. J Process Control 2000;10:177–184.

    Article  Google Scholar 

  37. Temam R. Infinite-dimensional dynamical systems in mechanics and physics. Berlin: Springer; 1988.

    Book  Google Scholar 

  38. Temam R. Do inertial manifolds apply to turbulence? Physica D: Nonlinear Phenomena 1989;37(1-3):146–152.

    Article  MathSciNet  Google Scholar 

  39. Wiggins S, Vol. 2. Introduction to applied nonlinear dynamical systems and chaos texts in applied mathematics. New York: Springer; 1990.

    Book  Google Scholar 

  40. Yang P, Wang J, O’Regan D, Fečkan M. Inertial manifold for semi-linear non-instantaneous impulsive parabolic equations in an admissible space. Commun Nonlinear Sci Numer Simul 2019;75:174–191.

    Article  MathSciNet  Google Scholar 

  41. You Y. Inertial manifolds and stabilization in nonlinear elastic systems with structural damping. Collection: differential equations with applications to mathematical physics. Math Sci Eng 1993;192:335–346.

    Article  Google Scholar 

  42. Zelik S. Inertial manifolds and finite-dimensional reduction for dissipative PDEs. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 2014; 144(6):1245–1327.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the referee for careful reading of our manuscript. His/her comments, remarks and corrections lead to the improvements of the paper. The second author would also like to express the deep gratitude to Viet Duoc Trinh for the fruitful discussions, and to Ricardo Rosa for the helpful discussions and for the useful document related to the paper R. Rosa and R. Temam [32].

Funding

The works of the first two authors are supported by the Vietnam Institute for Advanced Study in Mathematics (VIASM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thieu Huy Nguyen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Bui, XQ. & Do, D.T. Regularity of the Inertial Manifolds for Evolution Equations in Admissible Spaces and Finite-Dimensional Feedback Controllers. J Dyn Control Syst 28, 657–679 (2022). https://doi.org/10.1007/s10883-021-09538-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-021-09538-1

Keywords

Mathematics Subject Classification (2010)

Navigation