Skip to main content

Advertisement

Log in

Rhipicephalus sanguineus salivary gland extract as a source of immunomodulatory molecules

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Rhipicephalus sanguineus sensu lato (s.l.), popularly known as ‘brown dog tick’, is the primary vector of pathogens affecting dogs worldwide. To enter the host’s organism, these pathogens utilise the anticoagulant, antiplatelet, anti-inflammatory and immunomodulatory actions of compounds present in the tick’s saliva; such compounds are released by the ectoparasite in order to attach and feed on dogs. Nitric oxide (NO) is one of the regulatory factors in inflammation, apoptosis and immunomodulation. Here, we evaluated the in vitro activity of salivary gland extract of female dog ticks on the macrophage-derived J774 cell line, with and without lipopolysaccharide (LPS) stimulation. Cultures were evaluated for possible morphological alterations caused by exposure to the extract. There was no apparent in vitro cytotoxicity of the extract. Also, the NO secretory response in the non-LPS-stimulated cells was not inhibited. On the other hand, the extract presented modulatory action in the cultures of LPS-stimulated cells at a concentration of 0.1 μg/mL, possibly through macrophage activation, and induced a significant decrease in NO secretion. These results confirm the modulatory potential of bioactive molecules in the salivary glands of R. sanguineus ticks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pillai S (2015) Basic immunology: functions and disorders of the immune system, 5th edn. Elsevier, Philadelphia, PA

    Google Scholar 

  • Affolter VK, Moore PF (2002) Localized and disseminated histiocytic sarcoma of dendritic cell origin in dogs. Vet Pathol 39:74–83. https://doi.org/10.1354/VP.39-1-74

    Article  CAS  PubMed  Google Scholar 

  • Bechara GH, Szabó MPJ, Ferreira BR, Garcia M (1995) Rhipicephalus sanguineus tick in Brazil: feeding and reproductive aspects under laboratorial conditions. Braz J Vet Parasitol 4:61–66

    Google Scholar 

  • Binnington KC (1978) Sequential changes in salivary gland structure during attachment and feeding of the cattle tick Boophilus microplus. Int J Parasitol 8:97–115

    Article  CAS  Google Scholar 

  • Borges LMF, Soares SF, Fonseca IN et al (2007) Resistência carrapaticida em larvas de Rhipicephalus sanguineus (Acari: Ixodidae) de Goiânia-GO, Brasil. Rev Patol Trop 36:87–95

    Google Scholar 

  • Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129(Suppl):S161–S176

    Article  CAS  Google Scholar 

  • Brüne B (2003) Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ 10:864–869. https://doi.org/10.1038/sj.cdd.4401261

    Article  CAS  PubMed  Google Scholar 

  • Camargo-Mathias MI (2018) Inside ticks: morphophysiology, toxicology and therapeutic perspectives. Editora Unesp, São Paulo

    Google Scholar 

  • Camargo-Mathias MI, Furquim KCS (2013) The histology as a tool for the understanding of the morphophysiolgy of the brown dog tick (Rhipicephalus sanguineus). In: Jenkins OP (ed) Advances in zoology research. Nova Science Publishers, New York, pp 167–191

    Google Scholar 

  • Camargo-Mathias MI, Furquim KCS, Nunes PH (2011) Immunomodulatory effects of tick saliva. Invertebr Surviv J 8:231–240

    Google Scholar 

  • Dantas-Torres F (2008) The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): from taxonomy to control. Vet Parasitol 152:173–185. https://doi.org/10.1016/j.vetpar.2007.12.030

    Article  PubMed  Google Scholar 

  • Dantas-Torres F (2010) Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit Vectors 3:1–11

    Article  Google Scholar 

  • de Abreu MR, Rocha FA, Furquim KCS et al (2014) Salivary glands of female ticks Rhipicephalus sanguineus like a potential source of molecules with inhibitory action: In vivo study with Walker 256 tumor cells. J Pharm Care Health Syst 1:121. https://doi.org/10.4172/2376-0419.1000121

    Article  Google Scholar 

  • de Abreu MR, Pereira MC, Simioni PU et al (2019) Immunomodulatory and morphophysiological effects of Rhipicephalus sanguineus s.l. (Acari: Ixodidae) salivary gland extracts. Vet Immunol Immunopathol 207:36–45. https://doi.org/10.1016/j.vetimm.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  • Ferreira BR, Silva JS (1998) Saliva of Rhipicephalus sanguineus tick impairs T cell proliferation and IFN-gamma-induced macrophage microbicidal activity. Vet Immunol Immunopathol 64:279–293

    Article  CAS  Google Scholar 

  • Fivaz BH (1989) Immune suppression induced by the brown ear tick Rhipicephalus appendiculatus Neumann, 1901. J Parasitol 75:946–952

    Article  CAS  Google Scholar 

  • Furquim KCS, Mathias MIC, Hebling LMGF et al (2011) Ticks’ response to feeding on host immunized with glandular extracts of Rhipicephalus sanguineus females fed for 2, 4, and 6 days. I. Inactivity or early degeneration of salivary glands? Parasitol Res 109:147–162. https://doi.org/10.1007/s00436-010-2238-7

    Article  PubMed  Google Scholar 

  • Goldschmidt MH, Hendrick MJ (2008) Tumors of the skin and soft tissues. In: Meuten DJ (ed) Tumors in domestic animals. Iowa State Press, Ames, IA, pp 45–117

    Chapter  Google Scholar 

  • Griess JP (1879) Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt “Ueber einige Azoverbindungen.” Berichte der Dtsch Chem Gesellschaft 12:426–428

    Article  Google Scholar 

  • Gross TL, Ihrke P, Walder EJ, Affolter VK (2006) Skin diseases of the dog and cat: clinical and histopathologic diagnosis, 2nd edn. Blackwell Publishing, Ames, IA

    Google Scholar 

  • Hebling LMGF, Furquim KCS, Bechara GH, Camargo-Mathias MI (2013) Inoculation of salivary gland extracts obtained from female of Rhipicephalus sanguineus (Latreille, 1806) (Acari, Ixodidae) with 2, 4, and 6 days of feeding in rabbit: I—histopathology of the feeding lesion. Parasitol Res 112:577–584. https://doi.org/10.1007/s00436-012-3169-2

    Article  PubMed  Google Scholar 

  • Junqueira LCU, Junqueira LMMS (1983) Técnicas básicas de citologia e histologia. Livraria Editora Santos, São Paulo

    Google Scholar 

  • Justo OR, Simioni PU, Gabriel DL et al (2015) Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type. BMC Complement Altern Med 15:390. https://doi.org/10.1186/s12906-015-0896-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh E, Kim H, Kim S et al (2009) Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Med 75:148–151. https://doi.org/10.1055/s-0028-1088347

    Article  CAS  PubMed  Google Scholar 

  • Kopecky J, Kuthejlova M, Pechova J (1999) Salivary gland extract from Ixodes ricinus ticks inhibits production of interferon-gama by the upregulation of interleukin-10. Parasite Immunol 21:351–356

    Article  CAS  Google Scholar 

  • Kubes M, Fuchsberger N, Labuda M et al (1994) Salivary gland extracts of partially fed Dermacentor reticulatus ticks decrease natural killer cell activity in vitro. Immunology 82:113–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuthejlová M, Kopecký J, Stepánová G, Macela A (2001) Tick salivary gland extract inhibits killing of Borrelia afzelii spirochetes by mouse macrophages. Infect Immun 69:575–578. https://doi.org/10.1128/IAI.69.1.575-578.2001

    Article  PubMed  PubMed Central  Google Scholar 

  • Labruna MB (2004) Biologia-ecologia de Rhipicephalus sanguineus (Acari: Ixodidae). Rev Bras Parasitol Vet 13:123–124

    Google Scholar 

  • Li L, Kilbourn RG, Adams J, Fidler IJ (1991) Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res 51:2531–2535

    CAS  PubMed  Google Scholar 

  • Oliveira CJF, Sá-Nunes A, Francischetti IMB et al (2011) Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem 286:10960–10969. https://doi.org/10.1074/jbc.M110.205047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raskin RE, Meyer DJ (2011) Citologia clínica de cães e gatos: atlas colorido e guia de interpretação, 2nd edn. Elsevier, Rio de Janeiro

    Google Scholar 

  • Ribeiro JMC, Weiss JJ, Telford SR (1990) Saliva of the tick Ixodes dammini inhibits neutrophil function. Exp Parasitol 70:382–388

    Article  CAS  Google Scholar 

  • Sauer JR, Essenberg RC, Bowman AS (2000) Salivary glands in ixodid ticks: control and mechanism of secretion. J Insect Physiol 46:1069–1078. https://doi.org/10.1016/S0022-1910(99)00210-3

    Article  CAS  PubMed  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  CAS  Google Scholar 

  • Sonenshine DE, Roe RM (2014) Biology of ticks, vol 1. Oxford University Press, New York, NY

    Google Scholar 

  • Steen NA, Barker SC, Alewood PF (2006) Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47:1–20. https://doi.org/10.1016/j.toxicon.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  • Thomsen LL, Lawton FG, Knowles RG et al (1994) Nitric oxide synthase activity in human gynecological cancer. Cancer Res 54:1352–1354

    CAS  PubMed  Google Scholar 

  • Toledo CEP, Souza MA, Fraga MR et al (2012) Cellular viability and Nitric Oxide (NO) production by J774 macrophages in the presence of orthodontic archwires. J Biomed Sci Eng 5:255–262. https://doi.org/10.4236/jbise.2012.55032

    Article  CAS  Google Scholar 

  • Urioste S, Hall LR, Telford SR, Titus RG (1994) Saliva of the Lyme disease vector, Ixodes dammini, blocks cell activation by a nonprostaglandin E2-dependent mechanism. J Exp Med 180:1077–1085. https://doi.org/10.1084/JEM.180.3.1077

    Article  CAS  PubMed  Google Scholar 

  • Wako H, Deng H (2004) Chinese medicine and immunity. In: Yamaguchi N, Cooper E (eds) Complementary and alternative approaches to biomedicine. Springer, New York, pp 167–169

    Google Scholar 

  • Wikel SK (1985) Effects of tick infestation on the plaque-forming cell response to a thymic dependent antigen. Ann Trop Med Parasitol 79:195–198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP (Grants: 2019/02831-3; 2018/02999-9; 2015/20745-6; 2014/02843-8) and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Grant: 300625/2012-0). We also thank Dr. Wirla Maria da Silva Cunha Tamashiro and Dr. Luis Antonio Peroni for allowing use of the laboratory and necessary equipment to carry out the immunological tests and to Gerson de Mello Sousa for technical support.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all authors. MCP, EFN and MICM designed research. MCP, EFN, MRA and LNP conducted experiments. PUS contributed new reagents and analytical tools. MCP, EFN, PUS and MICM analyzed data. MCP and MICM wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Maria Izabel Camargo-Mathias.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.C., Nodari, E.F., de Abreu, M.R. et al. Rhipicephalus sanguineus salivary gland extract as a source of immunomodulatory molecules. Exp Appl Acarol 83, 387–398 (2021). https://doi.org/10.1007/s10493-021-00591-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-021-00591-w

Keywords

Navigation