Skip to main content
Log in

Bounds on the Number of 2-Level Polytopes, Cones, and Configurations

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove an upper bound of the form \(2^{O(d^2 \mathop {\mathrm {polylog}}d)}\) on the number of affine (resp. linear) equivalence classes of, by increasing order of generality, 2-level d-polytopes, d-cones, and d-configurations. This in particular answers positively a conjecture of Bohn et al. on 2-level polytopes. We obtain our upper bound by relating affine (resp. linear) equivalence classes of 2-level d-polytopes, d-cones, and d-configurations to faces of the correlation cone. We complement this with a \(2^{\varOmega (d^2)}\) lower bound, by estimating the number of nonequivalent stable set polytopes of bipartite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. A matrix M is said to be totally unimodular provided that the determinant of every square submatrix of M is either 0, 1, or \(-1\), see for instance [18].

  2. Throughout, we assume that systems of linear inequalities do not have repeated inequalities.

  3. Given a nonempty convex set \(C \subseteq \mathbb {R}^d\), the recession cone of C is the set of all directions along which we can move indefinitely and still be in C, i.e., \(\{y \in \mathbb {R}^d \mid x+\lambda y \in C,\,\forall x\in C,\,\forall \lambda \ge 0\}\).

References

  1. Aprile, M., Cevallos, A., Faenza, Y.: On 2-level polytopes arising in combinatorial settings. SIAM J. Discrete Math. 32(3), 1857–1886 (2018)

    Article  MathSciNet  Google Scholar 

  2. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A 5, 147–151 (1946)

    Google Scholar 

  3. Bohn, A., Faenza, Yu., Fiorini, S., Fisikopoulos, V., Macchia, M., Pashkovich, K.: Enumeration of 2-level polytopes (2017). arXiv:1703.01943

  4. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory Ser. B 18, 138–154 (1975)

    Article  MathSciNet  Google Scholar 

  5. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics. Springer, Berlin (2009)

    MATH  Google Scholar 

  6. Erdős, P., Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of \(K_n\)-free graphs. In: Colloquio Internazionale sulle Teorie Combinatorie, vol. II. Atti dei Convegni Lincei, vol. 17, pp. 19–27. Accademia Nazionale dei Lincei, Rome (1976)

  7. Gouveia, J., Grappe, R., Kaibel, V., Pashkovich, K., Robinson, R.Z., Thomas, R.R.: Which nonnegative matrices are slack matrices? Linear Algebra Appl. 439(10), 2921–2933 (2013)

    Article  MathSciNet  Google Scholar 

  8. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)

    Article  MathSciNet  Google Scholar 

  9. Gouveia, J., Pashkovich, K., Robinson, R.Z., Thomas, R.R.: Four-dimensional polytopes of minimum positive semidefinite rank. J. Comb. Theory Ser. A 145, 184–226 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gouveia, J., Robinson, R.Z., Thomas, R.R.: Polytopes of minimum positive semidefinite rank. Discrete Comput. Geom. 50(3), 679–699 (2013)

    Article  MathSciNet  Google Scholar 

  11. Grande, F.: On \(k\)-Level Matroids: Geometry and Combinatorics. PhD thesis, Freie Universität Berlin (2015)

  12. Grande, F., Rué, J.: Many 2-level polytopes from matroids. Discrete Comput. Geom. 54(4), 954–979 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hanner, O.: Intersections of translates of convex bodies. Math. Scand. 4, 65–87 (1956)

    Article  MathSciNet  Google Scholar 

  14. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  15. Lee, T., Shraibman, A.: Lower Bounds in Communication Complexity. Now Publishers, Hanover (2009)

    MATH  Google Scholar 

  16. Lovász, L., Saks, M.: Communication complexity and combinatorial lattice theory. J. Comput. Syst. Sci. 47(2), 322–349 (1993)

    Article  MathSciNet  Google Scholar 

  17. Macchia, M.: Two Level Polytopes: Geometry and Optimization. PhD thesis, Université Libre de Bruxelles (2018)

  18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics. Wiley, Chichester (1986)

    MATH  Google Scholar 

  19. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)

    Article  MathSciNet  Google Scholar 

  20. Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohoku Math. J. 58(3), 433–445 (2006)

    Article  MathSciNet  Google Scholar 

  21. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

    Article  MathSciNet  Google Scholar 

  22. Yao, A.C.: Some complexity questions related to distributed computing. In: Proceedings of the 11th Annual ACM Symposium on Theory of Computing (STOC’79), pp. 209–213. ACM, New York (1979)

Download references

Acknowledgements

This work was done while the authors were visiting the Simons Institute for the Theory of Computing. It was partially supported by the DIMACS/Simons Collaboration on Bridging Continuous and Discrete Optimization through NSF Grant # CCF-1740425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Macchia.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We acknowledge the support from ERC Grant FOREFRONT (Grant Agreement No. 615640) funded by the European Research Council under the EU’s 7th Framework Programme (FP7/2007-2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorini, S., Macchia, M. & Pashkovich, K. Bounds on the Number of 2-Level Polytopes, Cones, and Configurations. Discrete Comput Geom 65, 587–600 (2021). https://doi.org/10.1007/s00454-020-00181-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00181-4

Keywords

Mathematics Subject Classification

Navigation