Skip to main content
Log in

Lie symmetry analysis and similarity solutions for the Camassa–Choi equations

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The method of Lie symmetry analysis of differential equations is applied to determine exact solutions for the Camassa–Choi equation and its generalization. We prove that the Camassa–Choi equation is invariant under an infinity-dimensional Lie algebra, with an essential five-dimensional Lie algebra. The application of the Lie point symmetries leads to the construction of exact similarity solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Choi, W., Camassa, R.: Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech. 313, 83 (1996)

    Article  MathSciNet  Google Scholar 

  2. Harrop-Griffiths, B., Marzula, J.L.: Large data local well-posedness for a class of KdV-type equations II. Nonlinearity 31, 1868 (2018)

    Article  MathSciNet  Google Scholar 

  3. Paliathanasis, A., Krishnakumar, K., Tamizhmani, K.M., Leach, P.G.L.: The algebraic properties of the space- and time-dependent one-factor model of commodities. Mathematics 4, 28 (2016)

    Article  Google Scholar 

  4. Xin, X.: Nonlocal symmetries, exact solutions and conservation laws of the coupled Hirota equations. Appl. Math. Lett. 55, 63 (2016)

    Article  MathSciNet  Google Scholar 

  5. Xin, X.: Nonlocal symmetries and interaction solutions of the (2+1)-dimensional higher order Broer-Kaup system. Acta Phys. Sin. 65, 240202 (2016)

    Google Scholar 

  6. Kallinikos, N., Meletlidou, E.: Symmetries of charged particle motion under time-independent electromagnetic fields. J. Phys. A: Math. Theor. 46, 305202 (2013)

    Article  MathSciNet  Google Scholar 

  7. Jamal, S., Paliathanasis, A.: Group invariant transformations for the Klein–Gordon equation in three dimensional flat spaces. J. Geom. Phys. 117, 50 (2017)

    Article  MathSciNet  Google Scholar 

  8. Webb, G.M.: Lie symmetries of a coupled nonlinear Burgersheat equation system. J. Phys A: Math. Gen. 23, 3885 (1990)

    Article  Google Scholar 

  9. Leach, P.G.L.: Symmetry and singularity properties of the generalised Kummer–Schwarz and related equations. J. Math. Anal. Appl. 348, 487 (2008)

    Article  MathSciNet  Google Scholar 

  10. Velan, M.S., Lakshmanan, M.: Lie Symmetries and Invariant Solutions of the Shallow–Water Equation. Int. J. Non-linear Mech. 31, 339 (1996)

    Article  MathSciNet  Google Scholar 

  11. Pandey, M.: Lie symmetries and exact solutions of shallow water equations with variable bottom. Int. J. Nonl. Sci. Num. Sim. 16, 337 (2015)

    Article  MathSciNet  Google Scholar 

  12. Paliathanasis, A.: Lie symmetries and similarity solutions for rotating shallow water. Zeitschrift für Naturforschung A, in press [https://doi.org/10.1515/zna-2019-0063]

  13. Chetverikov, V.N.: Symmetry algebra of the Benjamin–Ono equation. Acta Appl. Math. 56, 121 (1999)

    Article  MathSciNet  Google Scholar 

  14. Szatmari, S., Bihlo, A.: Symmetry analysis of a system of modified shallow-water equations. Commun. Nonl. Sci. Numer. Simul. 19, 530 (2014)

    Article  MathSciNet  Google Scholar 

  15. Chesnokov, A.A.: Symmetries and exact solutions of the shallow water equations for a two-dimensional shear flow. J. Appl. Mech. Tech. Phys. 49, 737 (2008)

    Article  MathSciNet  Google Scholar 

  16. Chesnokov, A.A.: Symmetries and exact solutions of the rotating shallow water equations. Eur. J. Appl. Math. 20, 461 (2009)

    Article  MathSciNet  Google Scholar 

  17. Xin, X., Zhang, L., Xia, Y., Liu, H.: Nonlocal symmetries and exact solutions of the (2+1)-dimensional generalized variable coefficient shallow water wave equation. Appl. Math. Lett. 94, 112 (2019)

    Article  MathSciNet  Google Scholar 

  18. Paliathanasis, A.: Benney-Lin and Kawahara equations: a detailed study through Lie symmetries and Painlevé analysis. Physica Scripta, in press [https://doi.org/10.1088/1402-4896/ab32ad]

  19. Keing, C.E., Ponce, G., Vega, L.: On the generalized Benjamin-Ono equation. Trans. Am. Math. Soc. 342, 155 (1994)

    Article  MathSciNet  Google Scholar 

  20. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  Google Scholar 

  21. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  Google Scholar 

  22. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws, CRS Press LLC, Florida (2000)

  23. Jamal, S., Leach, P.G.L., Paliathanasis, A.: Nonlocal representation of the sl(2, R) algebra for the Chazy equation. Quaestiones Math. 42, 125 (2018)

    Article  MathSciNet  Google Scholar 

  24. Govinder, K.S.: Lie subalgebras, reduction of order, and group-invariant solutions. J. Math. Anal. Appl. 258, 720 (2001)

    Article  MathSciNet  Google Scholar 

  25. Morozov, V.V.: Classification of six-dimensional nilpotent Lie algebras. Izvestia Vysshikh Uchebn Zavendeniĭ Matematika 5, 161 (1958)

    MATH  Google Scholar 

  26. Mubarakzyanov, G.M.: On solvable Lie algebras. Izvestia Vysshikh Uchebn Zavendeniĭ Matematika 32, 114 (1963)

    MathSciNet  MATH  Google Scholar 

  27. Mubarakzyanov, G.M.: Classification of real structures of five-dimensional Lie algebras. Izvestia Vysshikh Uchebn Zavendeniĭ Matematika, 34, 99 (1963)

  28. Mubarakzyanov, G.M.: Classification of solvable six-dimensional Lie algebras with one nilpotent base element. Izvestia Vysshikh Uchebn Zavendeniĭ Matematika, 35, 104 (1963)

  29. Patera, J., Sharp, R.T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17, 986 (1976)

    Article  MathSciNet  Google Scholar 

  30. Patera, J., Winternitz, P.: Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 18, 1449 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andronikos Paliathanasis.

Ethics declarations

Conflict of interest

The author does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliathanasis, A. Lie symmetry analysis and similarity solutions for the Camassa–Choi equations. Anal.Math.Phys. 11, 57 (2021). https://doi.org/10.1007/s13324-021-00492-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00492-6

Keywords

Navigation