Skip to main content
Log in

A Gelfand-Levitan trace formula for generic quantum graphs

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate and prove a Gelfand-Levitan trace formula for general quantum graphs with arbitrary edge lengths and coupling conditions which cover all self-adjoint operators on quantum graphs, except for a set of measure zero. The formula is reminiscent of the original Gelfand-Levitan result on the segment with Neumann boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barcilon, V.: A note on a formula of Gelfand and Levitan. J. Math. Anal. Appl. 48, 43–50 (1974)

    Article  MathSciNet  Google Scholar 

  2. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186, p. 270. Providence, AMS (2013)

    MATH  Google Scholar 

  3. Bolte, J., Endres, S.: The trace formula for quantum graphs with general self adjoint boundary conditions. Ann. Henri Poincaré 10, 189–223 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bolte, J., Endres, S., Rueckriemen, R.: Heat-kernel Asymptotics for Schrödinger Operators on Graphs. Appl. Math. Res. Exp. 2015, 129–165 (2015)

    MATH  Google Scholar 

  5. Burckel, R.B.: An Introduction to Classical Complex Analysis, Vol. 1, p. 558. Birkhäuser, Basel (1979). ISBN: 3-7643-0989-X

  6. Carlson, R.: Eigenvalue cluster traces for quantum graphs with equal edge lengths Rocky Mountain. J. Math. 42, 467–490 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Currie, S., Watson, B.A.: Green’s functions and regularized traces of Sturm-Liouville operators on graphs. Proc. Edinb. Math. Soc. Ser. 2(51), 315–335 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dikiĭ, L.A.: On a simple identity for the characteristic values of a differential operator of the second order. Uspehi Matem. Nauk (N.S.) 8, 19–23 (1953). Russian

    MathSciNet  Google Scholar 

  9. Estermann, T.: Complex Numbers and Functions, p. 250. Athlone Press, London (1962)

    MATH  Google Scholar 

  10. Exner, P., Lipovský, J.: Resonances from perturbations of quantum graphs with rationally related edges. J. Phys. A Math. Theor. 43, 105301 (2010)

    Article  MathSciNet  Google Scholar 

  11. Freitas, P., Kennedy, J.B.: Summation formula inequalities for eigenvalues of Schrödinger operators. J. Spectral Theory 6, 483–503 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gelfand, I.M., Levitan, B.: On a simple identity for the characteristic values of a differential operator of the second order. Doklady Akad. Nauk SSSR 88, 593–596 (1953). Russian

    MathSciNet  Google Scholar 

  13. Halberg, C.J.A., Kramer, V.A.: A generalization of the trace concept. Duke Math. J. 27, 607–617 (1960)

    Article  MathSciNet  Google Scholar 

  14. Kottos, T., Smilansky, U.: Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys. 274, 76–124 (1999)

    Article  MathSciNet  Google Scholar 

  15. Kuchment, P.: Quantum graphs: an introduction and a brief survey. In Analysis on Graphs and its Applications. In: Proc. Symp. Pure. Math. AMS, pp. 291–314 (2008)

  16. Nicaise, S.: Spectre des réseaux topologiques finis Bull. Sc. math. 111, 401–413 (1987)

    MATH  Google Scholar 

  17. Roth, J.-P.: Spectre du laplacien sur un graphe. C.R. Acad. Sci. Paris 296, 793–795 (1983)

    MathSciNet  Google Scholar 

  18. Sadovnichiĭ, V.A., Podol\({\prime }\)skiĭ, V.E., Traces of operators, Uspekhi Mat. Nauk 61, : 89–156; translation in Russian Math. Surveys 61(2006), 885–953 (2006)

  19. Yang, C.-F.: Regularized trace for Sturm-Liouville differential operator on a star-shaped graph. Complex Anal. Oper. Theory 7, 1185–1196 (2013)

    Article  MathSciNet  Google Scholar 

  20. Yang, C.-F.: Traces of Sturm-Liouville operators with discontinuities. Inv. Prob. Sci. Eng. 22, 803–813 (2014)

    Article  MathSciNet  Google Scholar 

  21. Yang, C.-F., Yang, J.-X.: Large eigenvalues and traces of Sturm-Liouville equations on star-shaped graphs. Methods Appl. Anal. 14, 179–196 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Yurko, V.: Integral transforms connected with discontinuous boundary value problems. Int. Transf. Special Funct. 10, 141–164 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

P.F. was partially supported by the Fundação para a Ciência e a Tecnologia, Portugal, through project UIDB/00208/2020. J.L. was supported by the project “International mobilities for research activities of the University of Hradec Králové” CZ.02.2.69/0.0/0.0/16_027/0008487. J.L. thanks the University of Lisbon for its hospitality during his stay in Lisbon. The authors are grateful to the reviewer for the suggestions which helped to improve the manuscript. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Freitas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Lemma 3.1

First, we prove a version of Lemma 3.1 containing more terms than those used in Sect. 3 – this is already partially given in [22].

Lemma A.1

The functions \(c_{j}\) and \(s_{j}\) defined above satisfy

$$\begin{aligned}&c_j(x,k) = \cos {(kx)}+\frac{\sin {(kx)}}{k} \frac{1}{2}\int _0^x q_j(t)\,\mathrm {d}t \\&\quad + \frac{\cos {(kx)}}{k^2}\left[ \frac{1}{4}(q_j(x)-q_j(0))-\frac{1}{8}\left( \int _0^x q_j(t)\,\mathrm {d}t\right) ^2\right] +\mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,k}|x}}{k^2}\right) \,, \\&c_j'(x,k) = -k\sin {(kx)}+\cos {(kx)}\frac{1}{2}\int _0^x q_j(t)\,\,\mathrm {d}t \\&\quad + \frac{\sin {(kx)}}{k}\left[ \frac{1}{4}(q_j(x)+q_j(0))+\frac{1}{8}\left( \int _0^x q_j(t)\,\mathrm {d}t\right) ^2\right] +\mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,k}|x}}{k}\right) \,, \\&s_j(x,k) = \frac{\sin {(kx)}}{k}-\frac{\cos {(kx)}}{k^2}\frac{1}{2}\int _0^x q_j(t)\,\,\mathrm {d}t \\&\quad + \frac{\sin {(kx)}}{k^3}\left[ \frac{1}{4}(q_j(x)+q_j(0))-\frac{1}{8}\left( \int _0^x q_j(t)\,\mathrm {d}t\right) ^2\right] +\mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,k}|x}}{k^3}\right) \,, \\&s_j'(x,k) =\cos {(kx)}+\frac{\sin {(kx)}}{k}\frac{1}{2}\int _0^x q_j(t)\,\,\mathrm {d}t \\&\quad - \frac{\cos {(kx)}}{k^2}\left[ \frac{1}{4}(q_j(x)-q_j(0))+\frac{1}{8}\left( \int _0^x q_j(t)\,\mathrm {d}t\right) ^2\right] +\mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,k}|x}}{k^2}\right) \,. \end{aligned}$$

Proof

For the sake of simplicity we omit the subscript j. Repeatedly substituting \(c_j\) into its defining formula we get

$$\begin{aligned}&c(x,k) = \cos {(kx)}+\int _0^x \frac{\sin {(k(x-t))}}{k}\cos {(kt)}\,q(t)\,\mathrm {d}t \\&\quad + \int _0^x\frac{\sin {(k(x-t))}}{k}q(t)\int _0^t\frac{\sin {(k(t-s))}}{k}q(s)\cos {(ks)}\,\mathrm {d}s\mathrm {d}t + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^2}\right) \,. \end{aligned}$$

Using the trigonometric formula

$$\begin{aligned} \sin {(\alpha -\beta )}\cos {\beta } = \frac{1}{2}[\sin {\alpha }+\sin {(\alpha -2\beta )}] \end{aligned}$$

we obtain

$$\begin{aligned}&c(x,k) = \cos {(kx)}+\frac{1}{2k}\int _0^x [\sin {(kx)}+\sin {(k(x-2t))}]\,q(t)\,\mathrm {d}t \\&\quad + \int _0^x\int _0^t\frac{\sin {(k(x-t))}}{k}q(t)\frac{1}{2k}[\sin {(kt)}+\sin {(k(t-2s))}]q(s)\,\mathrm {d}s\mathrm {d}t + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^2}\right) \,. \end{aligned}$$

Finally, using integration by parts we have

$$\begin{aligned}&\int _0^x\sin {(k(x-2t))}q(t)\,\mathrm {d}t = \int _0^x q(t)\frac{\partial }{\partial t}\frac{\cos {(k(x-2t))}}{2k}\,\mathrm {d}t \\&\quad = \frac{1}{2k}[q(x)-q(0)]\cos {(kx)} -\frac{1}{2k}\int _0^x\cos {(k(x-2t))}\frac{\partial q(t)}{\partial t}\,\mathrm {d}t \\&\quad = \frac{1}{2k}[q(x)-q(0)]\cos {(kx)}+ \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k}\right) \,, \end{aligned}$$

where we have used the fact that \(q\in W^{1,1}(e)\). Using this we can write

$$\begin{aligned}&c(x,k) = \cos {(kx)}+\frac{\sin {(kx)}}{k}\frac{1}{2}\int _{0}^x q(t)\,\mathrm {d}t \\&\quad +\frac{1}{4k^2}[q(x)-q(0)]\cos {(kx)} + \frac{1}{4k^2}\int _0^x\int _0^t q(t)q(s)[\cos {(k(x-2t))}-\cos {(kx)}]\,\mathrm {d}s\mathrm {d}t \\&\quad + \frac{1}{2k^2}\int _0^x q(t)\sin {(k(x-t))}\int _0^t\sin {(k(t-2s))}q(s)\,\mathrm {d}s\mathrm {d}t + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^2}\right) \,. \end{aligned}$$

By similar arguments as before (with the use of integration by parts) the term in the last line and the term \(\frac{1}{4k^2}\int _0^x\int _0^t q(t)q(s)[\cos {(k(x-2t))}\,\mathrm {d}s\mathrm {d}t\) are of order \(\mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^2}\right) \). Finally, since

$$\begin{aligned}&\frac{\cos {(kx)}}{4k^2}\int _0^x q(t)\int _0^t q(s)\,\mathrm {d}s\mathrm {d}t = \frac{\cos {(kx)}}{8k^2}\int _0^x \int _0^x q(t) q(s)\,\mathrm {d}s\mathrm {d}t \\&\quad = \frac{\cos {(kx)}}{8k^2}\left( \int _0^x q(t)\,\mathrm {d}t\right) ^2\,, \end{aligned}$$

we obtain the formula for c(xk).

The formulæ for the function s(xk) and the corresponding derivatives can be derived in a similar way. For \(c'\) we have

$$\begin{aligned}&c'(x,k) = -k\sin {(kx)}+\int _0^x \cos {(k(x-t))}q(t)\cos {(kt)}\,\mathrm {d}t \\&\quad \quad + \int _0^x \cos {(k(x-t))}q(t)\int _0^t\frac{\sin {(k(t-s))}}{k}q(s)\cos {(ks)}\,\mathrm {d}s\mathrm {d}t\\&\quad + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k}\right) \\&\quad = -k \sin {(kx)}+\int _0^x q(t)\frac{1}{2}[\cos {(kx)}+\cos {(k(x-2t))}]\,\mathrm {d}t \\&\quad \quad +\int _0^x \cos {(k(x-t))}q(t)\int _0^t \frac{1}{2k}q(s)[\sin {(kt)}+\sin {(k(t-2s))}]\,\mathrm {d}s\mathrm {d}t\\&\quad + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k}\right) \end{aligned}$$

For the different particular terms we get

$$\begin{aligned}&\frac{1}{2}\int _0^x q(t)\cos {(k(x-2t))}\,\mathrm {d}t = \frac{1}{2} \int _0^x q(t) \frac{\partial \sin {(k(x-2t))}}{\partial t}\left( -\frac{1}{2k}\right) \,\mathrm {d}t \\&\quad =\frac{1}{4k}\int _0^x \frac{\partial q(t)}{\partial t} \sin {(k(x-2t))} \,\mathrm {d}t + \frac{1}{4k}[q(x)+q(0)]\sin {(kx)} \\&\quad = \frac{1}{4k}[q(x)+q(0)]\sin {(kx)} + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k}\right) \,. \\&\int _0^x \cos {(k(x-t))}q(t)\int _0^t \frac{1}{2k}q(s)\sin {(kt)}\,\mathrm {d}s\mathrm {d}t \\&\quad = \frac{1}{4k}\int _0^x q(t)[\sin {(kx)}-\sin {(k(x-2t))}]\int _0^t q(s)\,\mathrm {d}t \\&\quad = \frac{\sin {(kx)}}{8k}\left( \int _0^x q(t)\,\mathrm {d}t\right) ^2 + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k}\right) \,. \\&\int _0^x\cos {(k(x-t))}q(t)\int _0^t \frac{1}{2k}q(s)\sin {(k(t-2s))}\,\mathrm {d}s\mathrm {d}t = \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k}\right) \,. \end{aligned}$$

We also briefly show the derivation of formulæ for s and \(s'\).

$$\begin{aligned}&s(x,k) = \frac{\sin {(kx)}}{k} + \int _0^x \frac{\sin {(k(x-t))}}{k^2}q(t)\sin {(kt)}\,\mathrm {d}t \\&\quad \quad + \int _0^x \frac{\sin {(k(x-t))}}{k^3}q(t)\int _0^t \sin {(k(t-s))}q(s)\sin {(ks)}\,\mathrm {d}s\mathrm {d}t + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^3}\right) \\&\quad =\frac{\sin {(kx)}}{k}-\frac{\cos {(kx)}}{k^2}\frac{1}{2}\int _{0}^x q(t)\,\mathrm {d}t + \frac{1}{4k^3}\sin {(kx)}[q(x)+q(0)]\\&\quad \quad -\frac{1}{4k^3}\int _0^x[\sin {(kx)}+\sin {(k(x-2t))}]q(t)\int _0^t q(s)\,\mathrm {d}s\mathrm {d}t\\&\quad \quad +\frac{1}{2k^3}\int _0^x\sin {(k(x-t))}q(t)\int _0^t \cos {(k(t-2s))}q(s)\,\mathrm {d}s\mathrm {d}t+\mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^3}\right) \,. \\&s'(x,k) = \cos {(kx)}+\frac{1}{k}\int _0^x\cos {(k(x-t))}\sin {(kt)}q(t)\,\mathrm {d}t \\&\quad \quad +\frac{1}{k^2}\int _0^x \cos {(k(x-t))}q(t)\int _0^t\sin {(k(t-s))}\sin {(ks)}q(s)\,\mathrm {d}s\mathrm {d}t + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^2}\right) \\&\quad = \cos {(kx)}+\frac{1}{2k}\int _0^x [\sin {(kx)}-\sin {(k(x-2t))}]q(t)\,\mathrm {d}t \\&\quad \quad +\frac{1}{2k^2}\int _0^x \cos {(k(x-t))}q(t)\int _0^t[\cos {(k(t-2s))}-\cos {(kt)}]q(s)\,\mathrm {d}s\mathrm {d}t\\&\quad \quad + \mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^2}\right) = \cos {(kx)}+\frac{\sin {(kx)}}{k}\frac{1}{2}\int _0^x q(t)\,\mathrm {d}t - \frac{\cos {(kx)}}{4k^2}[q(x)-q(0)]\\&\quad \quad -\frac{1}{4k^2}\int _0^x\int _0^t \cos {(k(x-2t))}q(t)q(s)\,\mathrm {d}s\mathrm {d}t\\&\quad \quad -\frac{1}{4k^2}\int _0^x \cos {(kx)}q(t)\int _0^t q(s)\mathrm {d}s\mathrm {d}t+\mathrm{o}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|x}}{k^2}\right) \,. \end{aligned}$$

\(\square \)

Appendix B. Proof of Theorem 4.1

Lemma B.1

On the contour \(\Gamma _N\) defined in Sect. 4 with large enough N satisfying

$$\begin{aligned} N \not \in {\displaystyle \bigcup _{n\in \mathbb {Z}} } \left( \frac{n\pi }{\ell _j}-\frac{\varepsilon }{\ell _j},\frac{n\pi }{\ell _j}+\frac{\varepsilon }{\ell _j}\right) , \end{aligned}$$

it holds

$$\begin{aligned} \frac{\mathrm {e}^{|\mathrm {Im\,}k|\ell _j}}{|\sin {(k\ell _j)}|} \le K_{\varepsilon }\,, \end{aligned}$$

where the constant \(K_{\varepsilon }\) depends only on \(\varepsilon \).

Proof

The proof will be similar to the proof of [20, Lemma 2.4]. We will first prove the inequality for the right edge of the square \(\Gamma _N\), i.e. for \(k = N+i \tau \), \(\tau \in (-N,N)\). We know that there exists \(C_\varepsilon >0\) such that \(|\sin {(k\ell _j)}|> C_{\varepsilon }\). We have

$$\begin{aligned}&|\sin {(k\ell _j)}| = |\sin {(N\ell _j)}\cos {(i\tau \ell _j)}+\cos {(N\ell _j)}\sin {(i\tau \ell _j)}| \\&\quad =\frac{1}{2}\sqrt{|\sin {(N\ell _j)}(\mathrm {e}^{-\tau \ell _j}+\mathrm {e}^{\tau \ell _j})|^2+|\cos {(N\ell _j)}(\mathrm {e}^{-\tau \ell _j}-\mathrm {e}^{\tau \ell _j})|^2} \\&\quad \ge \frac{1}{2}|\sin {(N\ell _j)}||\mathrm {e}^{-\tau \ell _j}+\mathrm {e}^{\tau \ell _j}|> \frac{1}{2}C_\varepsilon \mathrm {e}^{|\tau | \ell _j} \end{aligned}$$

and hence

$$\begin{aligned} \frac{\mathrm {e}^{|\mathrm {Im\,}k|\ell _j}}{|\sin {(k\ell _j)}|} \le \frac{2\mathrm {e}^{|\mathrm {Im\,}k|\ell _j}}{C_\varepsilon \mathrm {e}^{|\mathrm {Im\,}k|\ell _j}} = \frac{2}{C_\varepsilon }\,. \end{aligned}$$

For the upper edge of the square \(k = \sigma +iN\), \(\sigma \in (-N,N)\) we have for sufficiently large N

$$\begin{aligned} |\sin {(k\ell _j)}| = \frac{1}{2}|\mathrm {e}^{-N\ell _j+i \sigma \ell _j}-\mathrm {e}^{N\ell _j-i \sigma \ell _j}|\ge \frac{1}{2}(\mathrm {e}^{N\ell _j}-\mathrm {e}^{-N\ell _j}) \end{aligned}$$

and hence for N large enough

$$\begin{aligned} \frac{\mathrm {e}^{|\mathrm {Im\,}k|\ell _j}}{|\sin {(k\ell _j)}|} \le \frac{2\mathrm {e}^{N\ell _j}}{\mathrm {e}^{N\ell _j}-\mathrm {e}^{-N\ell _j}} \le 4\,. \end{aligned}$$

We have chosen N such that \(\mathrm {e}^{-2N\ell _j}<\frac{1}{2}\). The proof for the other edges of the square \(\Gamma _N\) is similar. \(\square \)

For the sake of completeness we present the symmetric version of Rouché’s theorem (for the proof see e.g. [9, p. 156] or [5, p. 265]).

Theorem B.2

Let f and g be holomorphic functions in the bounded subset V of \(\mathbb {C}\) and continuous at its closure \(\bar{V}\). Let us assume that on the boundary \(\partial V\) of V the following relation holds

$$\begin{aligned} |f-g|<|f|+|g|\,. \end{aligned}$$

Then the functions f and g have the same (finite) number of zeros in V.

Now we can proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1

Since we assume that \(N\not \in \cup _{n\in \mathbb {N}_0} \left( \frac{\displaystyle n\pi }{\displaystyle \ell _i}-\frac{\displaystyle \varepsilon }{\displaystyle \ell _i}, \frac{\displaystyle n\pi }{\displaystyle \ell _i}+\frac{\displaystyle \varepsilon }{\displaystyle \ell _i}\right) \) for each i, we have \(|\sin {(N\ell _i)}|> C_\varepsilon > 0\) with \(C_\varepsilon \) depending only on \(\varepsilon \). We use the Rouché’s theorem with \(f= \varphi (k)\) and \(g = \prod _{i = 1}^d (-k\sin {(k\ell _i)})\).

Using \(\sin (k\ell _j) = \mathrm{O}(\mathrm {e}^{|\mathrm {Im\,}k|\ell _j})\) and a similar relation for the cosinus one can find that the second and further terms in \(\varphi (k)\) belong to \(\mathrm{O}(|k|^{d-1}\mathrm {e}^{|\mathrm {Im\,}k|\sum _{i=1}^d\ell _i})\). On the contour \(\Gamma _N\) we hence have

$$\begin{aligned} |f|+|g| = 2 |k|^d \prod _{i=1}^d |\sin {(k\ell _i)}|+\mathrm{O}(|k|^{d-1}\mathrm {e}^{|\mathrm {Im\,}k|\sum _{i=1}^d\ell _i})\,,\\ |f-g| \le \mathrm{O}(|k|^{d-1}\mathrm {e}^{|\mathrm {Im\,}k|\sum _{i=1}^d\ell _i})\,. \end{aligned}$$

Using Lemma B.1 we obtain

$$\begin{aligned}&|f|+|g|-|f-g| = |k|^d\prod _{i = 1}^d|\sin {(k\ell _i)}|\left( 2+\frac{1}{|k|}\mathrm{O}\left( \frac{\mathrm {e}^{|\mathrm {Im\,}k|\sum _{j=1}^d\ell _j}}{\prod _{o = 1}^d|\sin {(k\ell _o)}|}\right) \right) \\&\quad> |k|^d C_\varepsilon ^d>0 \end{aligned}$$

for |k| large enough and hence the inequality in Theorem B.2 is satisfied which completes the proof. \(\square \)

Appendix C. Complex integration lemma

Lemma C.1

Let us assume a counterclockwise contour \(\gamma _n\) which encircles \(\frac{\displaystyle n\pi }{\displaystyle \ell _i}\) once and does not encircle any other zeros of \(\sin {(k\ell _i)}\). Then

$$\begin{aligned}&\mathrm{a)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _n} \cot {(k\ell _i)} \,\mathrm {d}k = \frac{1}{\ell _i}, n\in \mathbb {Z} \\&\mathrm{b)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _n} \frac{1}{\sin {(k\ell _i)}} \,\mathrm {d}k = \frac{(-1)^n}{\ell _i}, n\in \mathbb {Z} \\&\mathrm{c)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _n} \frac{1}{k}\cot {(k\ell _i)} \,\mathrm {d}k = \frac{1}{n \pi }, n \in \mathbb {Z}\backslash \{0\}\\&\mathrm{d)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _0} \frac{1}{k}\cot {(k\ell _i)} \,\mathrm {d}k = 0 \\&\mathrm{e)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _n} \frac{1}{k\sin {(k\ell _i)}} \,\mathrm {d}k = \frac{(-1)^n}{n \pi }, n \in \mathbb {Z}\backslash \{0\} \\&\mathrm{f)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _0} \frac{1}{k\sin {(k\ell _i)}} \,\mathrm {d}k = 0 \\&\mathrm{g)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _n} \frac{1}{k}\cot ^2{(k\ell _i)} \,\mathrm {d}k = -\frac{1}{n^2 \pi ^2}, n \in \mathbb {Z}\backslash \{0\} \\&\mathrm{h)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _0} \frac{1}{k}\cot ^2{(k\ell _i)} \,\mathrm {d}k = -\frac{2}{3} \\&\mathrm{i)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _n} \frac{\cot {(k\ell _i)}}{k\sin {(k\ell _i)}} \,\mathrm {d}k = -\frac{(-1)^n}{n^2 \pi ^2}, n \in \mathbb {Z}\backslash \{0\}\\&\mathrm{j)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _0} \frac{\cot {(k\ell _i)}}{k\sin {(k\ell _i)}} \,\mathrm {d}k = -\frac{1}{6} \\&\mathrm{k)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _n} \frac{1}{k\sin ^2{(k\ell _i)}} \,\mathrm {d}k = -\frac{1}{n^2 \pi ^2}, n \in \mathbb {Z}\backslash \{0\}\\&\mathrm{l)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _0} \frac{1}{k\sin ^2{(k\ell _i)}} \,\mathrm {d}k = \frac{1}{3} \\&\mathrm{l)}\ \frac{\displaystyle 1}{\displaystyle 2\pi i}\displaystyle \oint _{\gamma _0} \frac{1}{k} \,\mathrm {d}k = 1 \end{aligned}$$

Proof

The lemma can be proven by standard complex analysis techniques, i.e. the residue theorem, see e.g. [5]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, P., Lipovský, J. A Gelfand-Levitan trace formula for generic quantum graphs. Anal.Math.Phys. 11, 56 (2021). https://doi.org/10.1007/s13324-021-00487-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00487-3

Navigation