Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum sensing of a coherent single spin excitation in a nuclear ensemble

Abstract

Accessing an ensemble of coherently interacting objects at the level of single quanta via a proxy qubit is transformative in the investigations of emergent quantum phenomena. An isolated nuclear spin ensemble is a remarkable platform owing to its coherence, but sensing its excitations with single spin precision has remained elusive. Here we achieve quantum sensing of a single nuclear-spin excitation (a nuclear magnon) in a dense ensemble of approximately 80,000 nuclei. A Ramsey measurement on the electron proxy qubit enables us to sense the hyperfine shift induced by a single nuclear magnon. We resolve multiple magnon modes distinguished by atomic species and spin polarity via the spectral dependence of this hyperfine shift. Finally, we observe the time-dependent shift induced by collective Rabi oscillations, revealing the competition between the buildup of quantum correlations and decoherence in the ensemble. These techniques could be extended to probe the engineered quantum states of the ensemble such as long-lived memory states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum sensing with single magnon precision.
Fig. 2: Single magnon spectrum.
Fig. 3: Erasing a single magnon.
Fig. 4: Sensing coherent dynamics of a dense nuclear ensemble.

Similar content being viewed by others

Data availability

All data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  MATH  Google Scholar 

  2. Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51, 1175–1178 (1983).

    Article  ADS  Google Scholar 

  3. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  ADS  Google Scholar 

  4. Zhu, B., Marino, J., Yao, N. Y., Lukin, M. D. & Demler, E. A. Dicke time crystals in driven-dissipative quantum many-body systems. New J. Phys. 21, 073028 (2019).

    Article  ADS  Google Scholar 

  5. Rotondo, P., Cosentino Lagomarsino, M. & Viola, G. Dicke simulators with emergent collective quantum computational abilities. Phys. Rev. Lett. 114, 143601 (2015).

    Article  ADS  Google Scholar 

  6. Taylor, J. M., Imamoglu, A. & Lukin, M. D. Controlling a mesoscopic spin environment by quantum bit manipulation. Phys. Rev. Lett. 91, 246802 (2003).

    Article  ADS  Google Scholar 

  7. Taylor, J. M., Marcus, C. M. & Lukin, M. D. Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90, 206803 (2003).

    Article  ADS  Google Scholar 

  8. Denning, E. V., Gangloff, D. A., Atatüre, M., Mørk, J. & Le Gall, C. Collective quantum memory activated by a driven central spin. Phys. Rev. Lett. 123, 140502 (2019).

    Article  ADS  Google Scholar 

  9. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  10. Tanji, H., Ghosh, S., Simon, J., Bloom, B. & Vuletić, V. Heralded single-magnon quantum memory for photon polarization states. Phys. Rev. Lett. 103, 043601 (2009).

    Article  ADS  Google Scholar 

  11. Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si ‘semiconductor vacuum’. Science 336, 1280–1283 (2012).

    Article  ADS  Google Scholar 

  12. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  ADS  Google Scholar 

  13. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  14. Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  ADS  Google Scholar 

  15. Taminiau, T. H., Cramer, J., Van Der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).

    Article  ADS  Google Scholar 

  16. Metsch, M. H. et al. Initialization and readout of nuclear spins via a negatively charged silicon-vacancy center in diamond. Phys. Rev. Lett. 122, 190503 (2019).

    Article  ADS  Google Scholar 

  17. Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).

    Article  ADS  Google Scholar 

  18. Hensen, B. et al. A silicon quantum-dot-coupled nuclear spin qubit. Nat. Nanotechnol. 15, 13–17 (2020).

    Article  ADS  Google Scholar 

  19. Car, B., Veissier, L., Louchet-Chauvet, A., Le Gouët, J. L. & Chanelière, T. Selective optical addressing of nuclear spins through superhyperfine interaction in rare-earth doped solids. Phys. Rev. Lett. 120, 197401 (2018).

    Article  ADS  Google Scholar 

  20. Morton, J. J. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

    Article  ADS  Google Scholar 

  21. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  ADS  Google Scholar 

  22. Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nat. Mater. 12, 494–504 (2013).

    Article  ADS  Google Scholar 

  23. Chekhovich, E. A., Hopkinson, M., Skolnick, M. S. & Tartakovskii, A. I. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain. Nat. Commun. 6, 6348 (2015).

    Article  ADS  Google Scholar 

  24. Waeber, A. M. et al. Pulse control protocols for preserving coherence in dipolar-coupled nuclear spin baths. Nat. Commun. 10, 3157 (2019).

    Article  ADS  Google Scholar 

  25. Wüst, G. et al. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nat. Nanotechnol. 11, 885–889 (2016).

    Article  ADS  Google Scholar 

  26. Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    Article  ADS  Google Scholar 

  27. Bechtold, A. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nat. Phys. 11, 1005–1008 (2015).

    Article  Google Scholar 

  28. Bethke, P. et al. Measurement of backaction from electron spins in a gate-defined GaAs double quantum dot coupled to a mesoscopic nuclear spin bath. Phys. Rev. Lett. 125, 047701 (2020).

    Article  ADS  Google Scholar 

  29. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    Article  ADS  Google Scholar 

  30. Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008).

    Article  ADS  Google Scholar 

  31. Vink, I. T. et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nat. Phys. 5, 764–768 (2009).

    Article  Google Scholar 

  32. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nat. Phys. 7, 109–113 (2011).

    Article  ADS  Google Scholar 

  33. Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    Article  ADS  Google Scholar 

  34. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  35. Zhao, N. et al. Sensing single remote nuclear spins. Nat. Nanotechnol. 7, 657–662 (2012).

    Article  ADS  Google Scholar 

  36. Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    Article  ADS  Google Scholar 

  37. Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

    Article  ADS  Google Scholar 

  38. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Nagy, R. et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).

    Article  ADS  Google Scholar 

  40. Kornher, T. et al. Sensing individual nuclear spins with a single rare-earth electron spin. Phys. Rev. Lett. 124, 170402 (2020).

    Article  ADS  Google Scholar 

  41. Lachance-Quirion, D. et al. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Sci. Adv. 3, e1603150 (2017).

    Article  ADS  Google Scholar 

  42. Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020).

    Article  ADS  Google Scholar 

  43. Probst, S. et al. Hyperfine spectroscopy in a quantum-limited spectrometer. Magn. Reson. 1, 315–330 (2020).

    Article  Google Scholar 

  44. Bayrakli, I. Frequency stabilization at the sub-kilohertz level of an external cavity diode laser. Appl. Opt. 55, 2463 (2016).

    Article  ADS  Google Scholar 

  45. Éthier-Majcher, G. et al. Improving a solid-state qubit through an engineered mesoscopic environment. Phys. Rev. Lett. 119, 130503 (2017).

    Article  ADS  Google Scholar 

  46. Bodey, J. H. et al. Optical spin locking of a solid-state qubit. npj Quantum Inf. 5, 95 (2019).

    Article  ADS  Google Scholar 

  47. Högele, A. et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett. 108, 197403 (2012).

    Article  ADS  Google Scholar 

  48. Hartmann, S. R. & Hahn, E. L. Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962).

    Article  ADS  MATH  Google Scholar 

  49. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  50. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  51. Allan, D. W. Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966).

    Article  ADS  Google Scholar 

  52. Abragam, A. & Hebel, L. C. The principles of nuclear magnetism. Am. J. Phys. 29, 860–861 (1961).

    Article  ADS  Google Scholar 

  53. Dudin, Y. O., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790–794 (2012).

    Article  Google Scholar 

  54. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  55. Chekhovich, E. A., da Silva, S. F. & Rastelli, A. Nuclear spin quantum register in an optically active semiconductor quantum dot. Nat. Nanotechnol. 15, 999–1004 (2020).

    Article  ADS  Google Scholar 

  56. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  57. Howe, D., Allan, D. & Barnes, J. Properties of signal sources and measurement methods. In Thirty Fifth Annual Frequency Control Symposium 669–716 (IEEE, 1981).

Download references

Acknowledgements

We thank G. Éthier-Majcher for helpful discussions. We acknowledge support from the US Office of Naval Research Global (N62909-19-1-2115), ERC PHOENICS (617985), EPSRC NQIT (EP/M013243/1), EU H2020 FET-Open project QLUSTER (DLV-862035) and the Royal Society (EA/181068). Samples were grown in the EPSRC National Epitaxy Facility. D.A.G. acknowledges a St. John’s College Fellowship and C.L.G., a Dorothy Hodgkin Royal Society Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.A.G., C.L.G. and M.A. conceived the experiments. D.M.J. and D.A.G. carried out the experiments and the data analysis. D.A.G., L.Z. and C.L.G. performed the theory and simulations. E.C. and M.H. grew the material. All the authors contributed to the discussion of the results. All the authors participated in preparing the manuscript.

Corresponding authors

Correspondence to D. A. Gangloff or M. Atatüre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks Olivier Krebs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample heterostructure.

A 3D render of the sample heterostructure (not to scale) with a cut-out above the QD layer. SIL stands for solid immersion lens and DBR stands for distributed Bragg reflector.

Extended Data Fig. 2 Experimental schematic.

Amplitude modulation of a single-frequency (ωL) laser with an electro-optic amplitude modulator (EOM) driven by a microwave tone (ωμw) produces two sidebands for spin-control. Encoding a phase step Δϕμw in the microwave signal using an arbitrary waveform egenrator (AWG) produces a change of relative phase 2Δϕμw between the two sidebands. These then drive two-photon Raman transitions between the energy levels of a negatively charged QD, as shown on the right. The optical fields have a single-photon detuning from the excited state of Δ = 800 GHz, and a two-photon detuning from the ESR of δ. Resonant laser pulses optically pump the electron spin at specific moments during the experimental sequence; this serves both to initialize the electron prior to spin control and to read out the population of the spin- state. Photons scattered back through the polarization- and frequency-filtered confocal microscope are detected on a Quantum Opus superconducting-nanowire single-photon detector (SNSPD).

Supplementary information

Supplementary Information

Supplementary Sections I–VIII, Figs. 1–13 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, D.M., Gangloff, D.A., Bodey, J.H. et al. Quantum sensing of a coherent single spin excitation in a nuclear ensemble. Nat. Phys. 17, 585–590 (2021). https://doi.org/10.1038/s41567-020-01161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01161-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing