Skip to main content
Log in

A Method for Synthesis of Nitrogen-Doped Graphene with High Specific Surface Area

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

A method for synthesis of nitrogen-doped graphene (N-graphene) with high specific surface area has been developed. In this method, magnesium oxide is used as a template where a carbon layer modified with nitrogen atoms is deposited. Nitrogen–carbon–mineral composites (N–C/MgO) containing from 5 to 27 wt % of nitrogen-doped carbon have been synthesized. After dissolving magnesium oxide, N-graphene with a specific surface area of 1300–1400 m2 g–1 has been synthesized for the first time. The synthesis of N-graphene has been characterized by electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, no. 5696, pp. 666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  2. Ning, G., Fan, Z., Wang, G., Gao, J., Qian, W., and Wei, F., Chem. Commun., 2011, vol. 47, no. 21, pp. 5976–5978. https://doi.org/10.1039/c1cc11159k

    Article  CAS  Google Scholar 

  3. Bulushev, D.A., Zacharska, M., Shlyakhova, E.V., Chuvilin, A.L., Guo, Y., Beloshapkin, S., Okotrub, A.V., and Bulusheva, L.G., ACS Catal., 2016, vol. 6, no. 2, pp. 681–691. https://doi.org/10.1021/acscatal.5b02381

    Article  CAS  Google Scholar 

  4. Chesnokov, V.V., Kriventsov, V.V., Malykhin, S.E., Chichkan, A.S., and Podyacheva, O.Yu., J. Struct. Chem., 2018, vol. 59, no. 4, pp. 876–882. https://doi.org/10.1134/S0022476618040133

    Article  Google Scholar 

  5. Chesnokov, V.V., Kriventsov, V.V., Malykhin, S.E., Svintsitskiy, D.A., Podyacheva, O.Y., Lisitsyn, A.S., and Richards, R.M., Diamond Relat. Mater., 2018, vol. 89, pp. 67–73. https://doi.org/10.1016/j.diamond.2018.08.007

    Article  CAS  Google Scholar 

  6. Chesnokov, V.V., Chichkan, A.S., Bedilo, A.F., and Shuvarakova, E.I., Fullerenes Nanotubes Carbon Nanostruct., 2020, vol. 28, no. 5, pp. 402–406. https://doi.org/10.1080/1536383x.2019.1695249

    Article  CAS  Google Scholar 

  7. Chesnokov, V.V., Chichkan, A.S., Bedilo, A.F., Shuvarakova, E.I., and Parmon, V.N., Dokl. Phys. Chem., 2019, vol. 488, pp. 154–157. https://doi.org/10.1134/S0012501619100038

    Article  CAS  Google Scholar 

  8. Qu, L., Liu, Y., Baek, J.-B., and Dai, L., ACS Nano, 2010, vol. 4, no. 3, pp. 1321–1326. https://doi.org/10.1021/nn901850u

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, L., He, R., Rim, K.T., Schiros, T., Kim, K.S., Zhou, H., Gutierrez, Ch., Chockalingam, S.P., Arguello, C.J., Palova, L., and Nordlund, D., Science, 2011, vol. 333, no. 6045, pp. 999–1003. https://doi.org/10.1126/science.1208759.

  10. Moon, J., An, J., Sim, U., Cho, S.-P., Kang, J.H., Chung, C., Seo, J.-H., Lee, J., Nam, K.T., and Hong, B.H., Adv. Mater., 2014, vol. 26, pp. 3501–3505. https://doi.org/10.1002/adma.201306287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rybin, M., Pereyaslavtsev, A., Vasilieva, T., Myasnikov, V., Sokolov, I., Pavlova, A., Obraztsova, E., Khomich, A., Ralchenko, V., and Obraztsova, E., Carbon, 2016, vol. 96, pp. 196–202. https://doi.org/10.1016/j.carbon.2015.09.056

    Article  CAS  Google Scholar 

  12. Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.-X., Fu, Q., Ma, X., Xue, Q., Sun, G., and Bao, X., Chem. Mater., 2011, vol. 23, no. 5, pp. 1188–1193. https://doi.org/10.1021/cm102666r

    Article  CAS  Google Scholar 

  13. Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., and Ajayan, P.M., ACS Nano, 2010, vol. 4, no. 11, pp. 6337–6342. https://doi.org/10.1021/nn101926g

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, J., Zhu, G., Huang, W., He, Z., Feng, X., Ma, Y., Dong, X., Fan, Q., Wang, L., Hu, Z., Lu, Y., and Huang, W., J. Mater. Chem., 2012, vol. 22, no. 37, pp. 19679–19683. https://doi.org/10.1039/c2jm33209d

    Article  CAS  Google Scholar 

  15. Wang, H., Maiyalagan, T., and Wang, X., ACS Catal., 2012, vol. 2, no. 5, pp. 781–794. https://doi.org/10.1021/cs200652y

    Article  CAS  Google Scholar 

  16. Jin, Z., Yao, J., Kittrell, C., and Tour, J.M., ACS Na, vol. 5, no. 5, pp. 4112–4117. https://doi.org/10.1021/nn200766e

  17. Pan, W., He, M., Zhang, L., Hou, Y., and Chen, C., Nanomaterials, 2019, vol. 9, no. 5, p. 798. https://doi.org/10.3390/nano9050798

    Article  CAS  Google Scholar 

  18. Buyanov, R.A. Zakoksovanie katalizatorov (Carbonization of Catalysts). Moscow: Nauka, 1983.

  19. Gor, G.Yu., Thommes, M., Cychosz, K.A., and Neimark, A.V., Carbon, 2012, vol. 50, pp. 1583–1590. https://doi.org/10.1016/j.carbon.2011.11.037

    Article  CAS  Google Scholar 

  20. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  21. Chesnokov, V.V., Chichkan, A.S., Paukshtis, E.A., Svintsitskii, D.A., Ismagilov, Z.R., and Parmon, V.N., Dokl. Phys. Chem., 2017, vol. 476, part 2, pp. 186–189. https://doi.org/10.7868/S0869565217290126

    Article  CAS  Google Scholar 

  22. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, Minnesota, USA, 1992.

    Google Scholar 

  23. Yang, H., Kannappan, S., Pandian, A.S., Jang, J-H., Lee, Y.S., and Lu, W., J. Power Sources, 2015, vol. 284, pp. 146–153. https://doi.org/10.1016/j.jpowsour.2015.03.015

    Article  CAS  Google Scholar 

  24. Arrigo, R., Schuster, M.E., Xie, Z., Yi, Y., Wowsnick, G., Sun, L.L., Hermann, K.E., Friedrich, M., Kast, P., Havecker, M., Knop-Gericke, A., and Schlogl, R., ACS Catal., 2015, vol. 5, pp. 2740–2753. https://doi.org/10.1021/acscatal.5b00094

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron microscopic studies were performed using the equipment of the Shared Use Center “National Center for Catalyst Research,” Boreskov Institute of Catalysis, SB RAS, Novosibirsk.

Funding

The work was supported by the Russian Science Foundation (project no.17-73-30032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Chichkan.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, V.V., Chichkan, A.S., Svintsitskiy, D.A. et al. A Method for Synthesis of Nitrogen-Doped Graphene with High Specific Surface Area. Dokl Phys Chem 495, 159–165 (2020). https://doi.org/10.1134/S0012501620110019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501620110019

Keywords:

Navigation