Skip to main content
Log in

New Catalytic Systems Based on Pd(0) Complexes for Addition Polymerization of Norbornene

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Addition polynorbornenes are the promising class of polymers for macromolecular design of various engineering polymers. This work has shown for the first time the fundamental possibility to obtain addition polynorbornenes in the presence of catalytic systems based on Pd(0) complexes activated by organic cocatalysts (aryl halides). Addition polymerization of norbornene has been studied in the presence of different cocatalysts, which allowed one to assess the effect of cocatalyst nature on the activity of the catalytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. A glass 4-mL vial was charged under inert atmosphere with 0.0120 g of Pd(dba)2 (0.02 mmol, 1 eq) and 0.020 g of iodobenzene (0.1 mmol, 5 eq). After stirring for 1–2 min, 0.263 g of 76% solution (2.1 mmol) of norbornene in anhydrous toluene was added to the mixture. The reaction mixture was stirred for 24 h. The polymer was precipitated into ethanol. The coagulated polymer was separated by filtration, washed with ethanol, and dried under reduced pressure. Next, the polymer was twice dissolved in toluene followed by precipitation into ethanol and dried under reduced pressure at 40°С until constant weight. Yield 36%. 1H NMR (CDCl3, δ, ppm): 2.35–0.78 (m, 10 H).

REFERENCES

  1. Bermeshev, M.V. and Chapala, P.P., Prog. Polym. Sci., 2018, vol. 84, pp. 1–46. https://doi.org/10.1016/j.progpolymsci.2018.06.003

    Article  CAS  Google Scholar 

  2. Blank, F. and Janiak, C., Coord. Chem. Rev., 2009, vol. 253, no. 7/8, pp. 827‒861. https://doi.org/10.1016/j.ccr.2008.05.010

    Article  CAS  Google Scholar 

  3. Bykov, V.I., Makovetskii, K.L., Popov, D.S., Bermeshev, M.V., Butenko, T.A., and Talyzenkov, Y.A., Dokl. Chem., 2011, vol. 439, no. 2, pp. 227–229. https://doi.org/10.1134/s0012500811080064

    Article  CAS  Google Scholar 

  4. Commarieu, B., Potier, J., Compaore, M., Dessureault, S., Goodall, B.L., Li, X., and Claverie, J.P., Macromolecules, 2016, vol. 49, no. 3, pp. 920–925. https://doi.org/10.1021/acs.macromol.5b02648

    Article  CAS  Google Scholar 

  5. Alentiev, D.A., Egorova, E.S., Bermeshev, M.V., Starannikova, L.E., Topchiy, M.A., Asachenko, A.F., Gribanov, P.S., Nechaev, M.S., Yampolskii, Y.P., and Finkelshtein, E.S., J. Mater. Chem. A, 2018, vol. 6, no. 40, pp. 19393–19408. https://doi.org/10.1039/c8ta06034g

    Article  CAS  Google Scholar 

  6. Karpov, G.O., Bermeshev, M.V., Borisov, I.L., Sterlin, S.R., Tyutyunov, A.A., Yevlampieva, N.P., Bulgakov, B.A., Volkov, V.V., and Finkelshtein, E.S., Polymer, 2018, vol. 153, pp. 626–636. https://doi.org/10.1016/j.polymer.2018.08.055

    Article  CAS  Google Scholar 

  7. Trnka, T.M. and Grubbs, R.H., Acc. Chem. Res., 2001, vol. 34, no. 1, pp. 18–29. https://doi.org/10.1021/ar000114f

  8. Vougioukalakis, G.C. and Grubbs, R., H. Chem. Rev., 2010, vol. 110, no. 3, pp. 1746–1787. https://doi.org/10.1021/cr9002424

  9. Kong, P., Drechsler, S., Balog, S., Schrettl, S., Weder, C., and Kilbinger, A.F.M., Polym. Chem., 2019, vol. 10, no. 16, pp. 2057–2063. https://doi.org/10.1039/C9PY00187E

    Article  CAS  Google Scholar 

  10. Finkelshtein, E., Gringolts, M., Bermeshev, M., Chapala, P., and Rogan, Y., in: Membrane Materials for Gas and Vapor Separation, Yampolskii, Y. and Finkelshtein, E., Eds., Wiley, 2017, pp. 143–221. https://doi.org/10.1002/9781119112747.ch6.

  11. Chapala, P.P., Bermeshev, M.V., Starannikova, L.E., Belov, N.A., Ryzhikh, V.E., Shantarovich, V.P., Lakhtin, V.G., Gavrilova, N.N., Yampolskii, Y.P., and Finkelshtein, E.S., Macromolecules, 2015, vol. 48, no. 22, pp. 8055–8061. https://doi.org/10.1021/acs.macromol.5b02087

    Article  CAS  Google Scholar 

  12. Maroon, C.R., Townsend, J., Higgins, M.A., Harrigan, D.J., Sundell, B.J., Lawrence, J.A., O’Brien, J.T., O’Neal, D., Vogiatzis, K.D., and Long, B.K., J. Membr. Sci., 2019, p. 117532. https://doi.org/10.1016/j.memsci.2019.117532

  13. Kim, D.-G., Bell, A., and Register, R.A., ACS Macro Lett., 2015, vol. 4, no. 3, pp. 327–330. https://doi.org/10.1021/acsmacrolett.5b00079

    Article  CAS  Google Scholar 

  14. Saito, T. and Wakatsuki, Y., Polymer, 2012, vol. 53, no. 2, pp. 308‒315. https://doi.org/10.1016/j.polymer.2011.12.004

    Article  CAS  Google Scholar 

  15. Lipian, J., Mimna, R.A., Fondran, J.C., Yandulov, D., Shick, R.A., Goodall, B.L., Rhodes, L.F., and Huffman, J.C., Macromolecules, 2002, vol. 35, no. 24, pp. 8969–8977. https://doi.org/10.1021/ma0209287

    Article  CAS  Google Scholar 

  16. Gringolts, M., Bermeshev, M., Yampolskii, Y., Starannikova, L., Shantarovich, V., and Finkelshtein, E., Macromolecules, 2010, vol. 43, no. 17, pp. 7165‒7172. https://doi.org/10.1021/ma100656e

    Article  CAS  Google Scholar 

  17. Shikada, C., Kaita, S., Maruyama, Y., Takei, M., and Wakatsuki, Y., Macromol. Rapid Commun., 2008, vol. 29, no. 3, pp. 219–223. https://doi.org/10.1002/marc.200700612

    Article  CAS  Google Scholar 

  18. Bermesheva, E.V., Wozniak, A.I., Andreyanov, F.A., Karpov, G.O., Nechaev, M.S., Asachenko, A.F., Topchiy, M.A., Melnikova, E.K., Nelyubina, Y.V., Gribanov, P.S., and Bermeshev, M.V., ACS Catal., 2020, vol. 10, no. 3, pp. 1663–1678. https://doi.org/10.1021/acscatal.9b04686

    Article  CAS  Google Scholar 

  19. Fontana, M., Motti, E., and Catellani, M., Acc. Chem. Res., 2016, vol. 49, no. 7, pp. 1389–1400. https://doi.org/10.1021/acs.accounts.6b00165

    Article  CAS  PubMed  Google Scholar 

  20. Cheng, H.-G., Chen, S., Chen, R., and Zhou, Q., Angew. Chem. Int. Ed., 2019, vol. 58, no. 18, pp. 5832–5844. https://doi.org/10.1002/anie.201813491

    Article  CAS  Google Scholar 

  21. Ariafard, A. and Lin, Z., Organometallics, 2006, vol. 25, no. 16, pp. 4030–4033. https://doi.org/10.1021/om060236x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Presidential Grant Program (project no. MD–1818.2020.3). The synthesis of initial Pd complexes was performed within the State Program of Topchiev Institute of Petrochemical Synthesis, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bermeshev.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, G.O., Bermeshev, M.V. New Catalytic Systems Based on Pd(0) Complexes for Addition Polymerization of Norbornene. Dokl Chem 495, 195–198 (2020). https://doi.org/10.1134/S0012500820120046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500820120046

Keywords:

Navigation