Skip to main content
Log in

Approach to plastic deformation and strain rate in FSW process

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In this work, two simple models to calculate the strain rate at which material deforms during the friction stir welding (FSW) process are proposed. In both cases, predictions are associated with operational parameters such as rotational and travel speed and tool pin radius. A first model is based on the analysis of the strain experienced by the material on the periphery of the pin associated with the rotation and displacement present during the joining process. The second one is based on the resemblance of FSW with an asymmetric rolling process in which a dramatic strain gradient takes place. Using these models, and employing fitting parameters, it is possible to estimate the mean deformation rate during the FSW process. Very reasonable values, which fall in the range of strain rate data reported in the literature, are obtained. This new view should allow determining equivalent experimental conditions (strain, strain rate, and temperature in conventional uniaxial tests) under which this joining process occurs. This is critical to predict weld quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buffa G, Donati L, Fratini L, Tomesani L (2006) Solid state bonding in extrusion and FSW: process mechanics and analogies. J Mater Process Technol 177(1–3):344–347. https://doi.org/10.1016/j.jmatprotec.2006.04.042

    Article  CAS  Google Scholar 

  2. Kumar K, Kailas SV (2008) The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A 485(1–2):367–374. https://doi.org/10.1016/j.msea.2007.08.013

    Article  CAS  Google Scholar 

  3. Frigaard Ø, Grong Ø, Midling OT (2001) A process model for friction stir welding of age hardening aluminum alloys. Metall Mater Trans A 32(5):1189–1200. https://doi.org/10.1007/s11661-001-0128-4

    Article  Google Scholar 

  4. Chang CI, Lee CJ, Huang JC (2004) Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater 51(6):509–514. https://doi.org/10.1016/j.scriptamat.2004.05.043

    Article  CAS  Google Scholar 

  5. Arora A, Zhang Z, De A, DebRoy T (2009) Strains and strain rates during friction stir welding. Scr Mater 61(9):863–866. https://doi.org/10.1016/j.scriptamat.2009.07.015

    Article  CAS  Google Scholar 

  6. Dialami N, Cervera M, Chiumenti M (2018) Numerical modelling of microstructure evolution in friction stir welding (FSW). Metals (Basel) 8(3):183. https://doi.org/10.3390/met8030183

    Article  CAS  Google Scholar 

  7. Zhao W, Wu CS (2019) Constitutive equation including acoustic stress work and plastic strain for modeling ultrasonic vibration assisted friction stir welding process. Int J Mach Tools Manuf 145(May):103434. https://doi.org/10.1016/j.ijmachtools.2019.103434

    Article  Google Scholar 

  8. Kumar R, Pancholi V, Bharti RP (2018) Material flow visualization and determination of strain rate during friction stir welding. J Mater Process Technol 255:470–476. https://doi.org/10.1016/j.jmatprotec.2017.12.034

    Article  Google Scholar 

  9. Gerlich A, Avramovic-Cingara G, North TH (2006) Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding. Metall Mater Trans A Phys Metall Mater Sci 37(9):2773–2786. https://doi.org/10.1007/BF02586110

    Article  Google Scholar 

  10. Ahmed MMZ, Wynne BP, Rainforth WM, Addison A, Martin JP, Threadgill PL (2019) Effect of Tool geometry and heat input on the hardness, grain structure, and crystallographic texture of thick-section friction stir-welded aluminium. Metall Mater Trans A Phys Metall Mater Sci 50(1):271–284. https://doi.org/10.1007/s11661-018-4996-2

    Article  CAS  Google Scholar 

  11. Gerlich A, Su P, Yamamoto M, North TH (2007) Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy. J Mater Sci 42:5589–5601. https://doi.org/10.1007/s10853-006-1103-7

    Article  CAS  Google Scholar 

  12. Reynolds AP (2000) Visualisation of material flow in autogenous friction stir welds. Sci Technol Weld Join 5(2):120–124. https://doi.org/10.1179/136217100101538119

    Article  Google Scholar 

  13. Srivatsan TS, Vasudevan S, Park L (2007) The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024. Mater Sci Eng A 466(1–2):235–245. https://doi.org/10.1016/j.msea.2007.02.100

    Article  CAS  Google Scholar 

  14. Jacquin D, Guillemot G (2021) A review of microstructural changes occurring during FSW in aluminium alloys and their modelling. J Mater Process Technol 288(April 2020):116706. https://doi.org/10.1016/j.jmatprotec.2020.116706

    Article  CAS  Google Scholar 

  15. Barbini A, Carstensen J, dos Santos JF (2018) Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024/AA7050 FSW joints. J Mater Sci Technol 34(1):119–127. https://doi.org/10.1016/j.jmst.2017.10.017

    Article  Google Scholar 

  16. Zhou Z, Yue Y, Ji S, Li Z, Zhang L (2017) Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy. Int J Adv Manuf Technol 88(5–8):2135–2141. https://doi.org/10.1007/s00170-016-8924-6

    Article  Google Scholar 

  17. Milagre MX et al (2018) On the microstructure characterization of the AA2098-T351 alloy welded by FSW. Mater Charact 140(April):233–246. https://doi.org/10.1016/j.matchar.2018.04.015

    Article  CAS  Google Scholar 

  18. Norena A E, Suarez P DA, Zuluaga P M, Hoyos P E, Montoya G Y (2019) Model-based proposal of a control strategy for friction stir welding. In: 2019 IEEE 4th Colomb. Conf. Autom. Control, pp 1–6. https://doi.org/10.1109/CCAC.2019.8920996

    Chapter  Google Scholar 

  19. Hoyos E, López D, Alvarez H (2016) A phenomenologically based material flow model for friction stir welding. Mater Des 111. https://doi.org/10.1016/j.matdes.2016.09.009

  20. Schneider J, Beshears R, Nunes AC (2006) Interfacial sticking and slipping in the friction stir welding process. Mater Sci Eng A 435–436:297–304. https://doi.org/10.1016/j.msea.2006.07.082

    Article  CAS  Google Scholar 

  21. Selvaraj M (2013) A temperature dependent slip factor based thermal model for friction stir welding of stainless steel. Sadhana Acad Proc Eng Sci 38(6):1393–1405. https://doi.org/10.1007/s12046-013-0158-9

    Article  CAS  Google Scholar 

  22. Bhimavarapu SB, Maheshwari AK, Bhargava D, Narayan SP (2011) Compressive deformation behavior of Al 2024 alloy using 2D and 4D processing maps. J Mater Sci 46(9):3191–3199. https://doi.org/10.1007/s10853-010-5203-z

    Article  CAS  Google Scholar 

  23. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Mater Des 32(2):535–549. https://doi.org/10.1016/j.matdes.2010.08.025

    Article  CAS  Google Scholar 

  24. Zhang H, Li L, Yuan D, Peng D (2007) Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures. Mater Charact 58(2):168–173. https://doi.org/10.1016/j.matchar.2006.04.012

    Article  CAS  Google Scholar 

  25. Chen L, Zhao G, Yu J (2015) Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy. Mater Des 74:25–35. https://doi.org/10.1016/j.matdes.2015.02.024

    Article  CAS  Google Scholar 

  26. Fernández R, Ibáñez J, Cioffi F, Verdera D, González-Doncel G (2017) Friction stir welding of 25%SiC/2124Al composite with optimal mechanical properties and minimal tool wear. Sci Technol Weld Join 22(6):526–535. https://doi.org/10.1080/13621718.2016.1268368

    Article  CAS  Google Scholar 

  27. Tamano T, Yanagimoto S (1970) Theory of rolling for the range of mixed friction : Part 1, A new method of calculation for the rolling without tension. Bull JSME 13(63):1131–1138. https://doi.org/10.1299/jsme1958.13.1131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Hoyos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyos, E., Montoya, Y., Fernández, R. et al. Approach to plastic deformation and strain rate in FSW process. Weld World 65, 1519–1530 (2021). https://doi.org/10.1007/s40194-021-01093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01093-4

Keywords

Navigation