Skip to main content
Log in

Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Ruminants and humans are unable to synthesize essential amino acids (EAAs) and conditionally essential amino acids (CEAAs) under normal conditions and need to acquire them from plant sources. Maize plays, as a major crop, a central role in global food security. However, maize is deficient in several EAAs and CEAAs. Genetic engineering has been successfully used to enrich the EAA content of maize to some extent, including the content of Lys, Trp, and Met. However, research on other EAAs is lacking. Genetic engineering provides several viable approaches for increasing the EAA content in maize, including transformation of a single gene, transformation of multiple genes in a single cassette, overexpression of putative amino acid transporters, engineering the amino acid biosynthesis pathway including silencing of feedback inhibition enzymes, and overexpression of major enzymes in this pathway. These challenging processes require a deep understanding of the biosynthetic and metabolic pathways of individual amino acids, and the interaction of individual amino acids with other metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

source served as a control of the N source. OE1, OE2 and OE3 represent three independent gene overexpression lines. For more background, see Hasan (2015) and Pan et al. (2015). Reproduced from Fig. 10 (Pan et al. 2015) under a Creative Commons Attribution License (version 3.0)

Fig. 2

source served as a control of the N source. OE1, OE2 and OE3 represent three independent gene overexpression lines. For more background, see Hasan (2015) and Pan et al. (2015). Reproduced from Fig. 10 (Pan et al. 2015) under a Creative Commons Attribution License (version 3.0)

Abbreviations

AA:

Amino acid

CEAA:

Conditionally essential amino acid

EAA:

Essential amino acid

References

  • Abiose SH, Ikujenlola IA (2014) Comparison of chemical composition, functional properties and amino acids composition of quality protein maize and common maize (Zea may L). African J Food Sci Technol 5(3):81–89

    Google Scholar 

  • ADAS (2013) Review of the strategies for the comprehensive food and feed safety and nutritional assessment of GM plants per se. EFSA Support Publ 480:115

    Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48(7):547–552

    Article  PubMed  Google Scholar 

  • Anderson PC, Chomet PS, Griffor MC, Kriz AL (1997) Anthranilate synthase gene and its use thereof. World Intellectual Property Organization 97/26366, Inventors, July 24

  • Azevedo RA, Arruda P (2010) High-lysine maize: the key discoveries that have made it possible. Amino Acids 39:979–989

    Article  CAS  PubMed  Google Scholar 

  • Babu R, Prasanna BM (2014) Molecular breeding for quality protein maize (QPM). Genomics Plant Genet Resources. Springer, Berlin, pp 489–505

    Google Scholar 

  • Bagga S, Potenza C, Ross J, Martin MN, Leustek T, Sengupta-Gopalan C (2005) A transgene for high methionine protein is posttranscriptionally regulated by methionine. Vitro Cell Dev Biol Plant 41:731–741

    Article  CAS  Google Scholar 

  • Bell SP, Mitchell J, Leber J, Kobayashi R, Stillman B (1995) The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 83:563–568

    Article  CAS  PubMed  Google Scholar 

  • Bicar EH, Woodman-Clikeman W, Sangtong V, Peterson JM, Yang SS, Lee M, Scott MP (2008) Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res 17(1):59–71

    Article  CAS  PubMed  Google Scholar 

  • Binder S, Knill T, Schuster J (2007) Branched-chain amino acid metabolism in higher plants. Physiol Plant 129:68–78

    Article  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressani R, Alvarado J, J, Viteri F, (1969) Evaluación, en niños, de la calidad de la proteína del maíz opaco-2. Archivos Latinoamericanos de Nutrición 19:129–140

    Google Scholar 

  • Brochetto-Braga MR, Leite A, Arruda P (1992) Partia1 purification and characterization 299 of lysine-ketoglutarate reductase activity in normal and opaque-2 maize endosperms. Plant Physiol 98:1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CFIA (Canadian Food Inspection Agency) (2012a) Decision document DD2010–82 Determination of the safety of Monsanto Canada Inc.s corn (Zea mays L.) event MON87460. http://www.inspection.gc.ca/plants/plants-with-novel-traits/approved-under-review/decision-documents/dd2010-82/eng/1331755614111/1331755683913

  • CFIA (Canadian Food Inspection Agency) (2012b) Data requirements for single ingredient approval and feed registration.http://www.inspection.gc.ca/animals/feeds/regulatory-guidance/rg-1/chapter-2/eng/1329298059609/1329298179464

  • Chassy B (2008) Maize with increased lysine (lysine maize—LY038). Compr Rev Food Sci Food Saf 7:99–106

    Article  CAS  Google Scholar 

  • Chen H, Saksa K, Zhao F, Qiu J, Xiong L (2010) Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants. Plant J 63:573–583

    Article  CAS  PubMed  Google Scholar 

  • Chipman DM, Shaanan B (2001) The ACT domain family. Curr Opin Struct Biol 11:694–700

    Article  CAS  PubMed  Google Scholar 

  • Chipman DM, Duggleby RG, Tittmann K (2005) Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol 9:475–481

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Brotherton JE, Song H-S, Widholm JM (2000) Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol 123:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CA (Codex Alimentarius) (2003) Guideline for the conduct of food safety assessment of foods derived from recombinant‐DNA Plants (CAC/GL 45‐2003)

  • Coleman CE, Lopes MA, Gillikin JW, Boston RS, Larkins BA (1995) A defective signal peptide in the maize high-lysine mutant floury-2. Proc Natl Acad Sci USA 92:6828–6831

    Article  CAS  PubMed  Google Scholar 

  • Curien G, Biou V, Mas-Droux C, Robert-Genthon M, Ferrer JL, Dumas R (2008) Amino acid biosynthesis: new architectures in allosteric enzymes. Plant Physiol Biochem 46:325–339

    Article  CAS  PubMed  Google Scholar 

  • Damerval C, Devienne D (1993) Quantification of dominance for proteins pleiotropically affected by opaque-2 in maize. Heredity 70:38–51

    Article  Google Scholar 

  • DellaPenna D (1999) Nutritional genomics: Manipulating plant micronutrients to improve human health. Science 285:375–379

    Article  CAS  PubMed  Google Scholar 

  • Dizigan MA, Kelly RA, Voyles DA, Luethy MH, Malvar TM, Malloy KP, inventors (2007) High lysine maize compositions and event LY038 maize plants. United States Patent No. 7157281

  • Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309–324

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2004) Guidance document on the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA J 99:1–94

    Google Scholar 

  • Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthaseincreases valine production in Corynebacterium glutamicum. Appl Envi-ron Microbiol 71:207–213

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (2020) Predicting the impact of coexistence-guided, genetically modified cropping on Irish biodiversity. STRIVE Environmental Protection Agency Program 2007–2013. Available online: http://www.epa.ie/pubs/reports/research/biodiversity/STRIVE_39_Mullins_Genetics_ 322 web.pdf. Last accessed: April 6, 2020

  • FAOSTAT (Food and Agricultural Organization Statistics) (2020) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 6 April 2020

  • Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman and Co., New York

    Google Scholar 

  • Freist W, Gauss DH (1995) Lysyl–tRNA synthetase. Biol Chem Hoppe-Seyler 376:451–472

    CAS  PubMed  Google Scholar 

  • Frizzi A, Huang S, Gilbertson LA, Armstrong TA, Luethy MH, Malvar TM (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol J 6:13–21

    CAS  PubMed  Google Scholar 

  • Fürst P (1998) Old and new substrates in clinical nutrition. J Nutr 128:789–796

    Article  PubMed  Google Scholar 

  • Galili G (2002) New insights into the regulation and functional significance of lysine metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 53:27–43

    Article  CAS  Google Scholar 

  • Galili G, Amir R (2013) Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J 11:211–222

    Article  CAS  PubMed  Google Scholar 

  • Garnett EE, Balmford A, Sandbrook C, Pilling MA, Marteau TM (2019) Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proc Natl Acad Sci USA 116(42):20923–20929

    Article  CAS  PubMed  Google Scholar 

  • Glenn KC (2007) Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: lysine maize as a case study. J AOAC Int 90:1470–1479

    Article  CAS  PubMed  Google Scholar 

  • Hasan MM (2015) Functional characterization of monosaccharide and amino acid transporters in maize. PhD Dissertation. Department of Plant Nutrition, China Agricultural University, Beijing, China

  • He XY, Tang MZ, Luo YB, Li X, Cao SS, Yu JJ, Delaney B, Huang KL (2009) A 90-day toxicology study of transgenic lysine-rich maize grain (Y642) in Sprague-Dawley rats. Food Chem Toxicol 47(2):425–432

    Article  CAS  PubMed  Google Scholar 

  • Hershey HP, Schwartz LJ, Gale JP, Abell LM (1999) Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia. Plant Mol Biol 40:795–806

    Article  CAS  PubMed  Google Scholar 

  • Holding DR, Hunter BG, Chung T, Gibbon BC, Ford CF, Bharti AK, Messing J, Hamaker BR, Larkins BA (2008) Genetic analysis of opaque2 modifier loci in quality protein maize. Theor Appl Genet 117:157–170

    Article  CAS  PubMed  Google Scholar 

  • Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  CAS  PubMed  Google Scholar 

  • Huang SS, Adams WR, Zhou Q, Malloy KP, Voyles DA, Anthony J, Kriz AL, Luethy MH (2004) Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J Agric Food Chem 52:1958–1964

    Article  CAS  PubMed  Google Scholar 

  • Huang SS, Kruger DE, Frizzi A, D’Ordine RL, Florida CA, Adams WR, Brown WE, Luethy MH (2005) High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotech J 3:555–569

    Article  CAS  Google Scholar 

  • Huang S, Frizzi A, Florida CA, Kruger DE, Luethy MH (2006) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD alpha-zeins. Plant Mol Biol 61(3):525–535

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Hardy CL, Baumel CP, Yu TH, Sell JL (2001) Identifying valuable corn quality traits for livestock feed. Cereal Foods World 46:472–481

    CAS  Google Scholar 

  • Jones RA, Larkins BA, Tsai CY (1977) Storage proteins synthesis in maize II. Reduced synthesis of a major zein component by the opaque-2 mutant of maize. Plant Physiol 59:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karchi H, Shaul O, Galili G (1994) Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc Natl Acad Sci USA 91:2577–2581

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao G, Hu C, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  Google Scholar 

  • Kim CS, Hunter BG, Kraft J, Boston RS, Yans S, Jung R, Larkins BA (2004) A defective 367 signal peptide in a 19-kDa alpha-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant. Plant Physiol 134:380–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Gibbon BC, Gillikin JW, Larkins BA, Boston RS, Jung R (2006) The maize Mucronate mutation is a deletion in the 16-kDa gamma-zein gene that induces the unfolded protein response. Plant J 48:440–451

    Article  CAS  PubMed  Google Scholar 

  • Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li C, Meeley RB, Tarczynski MC, Wagner C, Hanson AD (2003) Insertional inactivation of the methionine S-methyltransferase gene eliminates the S-methylmethionine cycle and increases the methylation ratio. Plant Physiol 131:1808–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreps JL, Ponappa T, Dong W, Town CD (1996) Molecular basis of α-methyltryptophan resistance in amt-1, a mutant of Arabidopsis thaliana with altered tryptophan metabolism. Plant Physiol 110:1159–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriz AL (2009) Enhancement of amino acid availability in corn grain. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize Improvement. Springer, Heidelberg, pp 79–89

    Chapter  Google Scholar 

  • Lee YT, Duggleby RG (2001) Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochem 40:6836–6844

    Article  CAS  Google Scholar 

  • Lee SI, Kim HU, Lee YH, Suh SC, Lim YP, Lee HY, Kim HI (2001) Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed 8:75–84

    Article  CAS  Google Scholar 

  • Lee M, Huang T, Toro-Ramos T, Fraga M, Last RL, Jander G (2008) Reduced activity of Arabidopsis thaliana HMT2, a methionine biosynthetic enzyme, increases seed methionine content. Plant J 54:310–320

    Article  CAS  PubMed  Google Scholar 

  • Li J, Last RL (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 110:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Xiang X, Huang Y, Zhou Y, An D, Dong J, Zhao C, Liu H, Li Y, Wang Q, Du C, Messing J, Larkins BA, Wu Y, Wang W (2020) Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun 11(17):2874

    Google Scholar 

  • Lopez-Valenzuela JA, Gibbon BC, Holding DR, Larkins BA (2004) Cytoskeletal proteins are coordinately increased in maize genotypes with high levels of eEF1A. Plant Physiol 135:1784–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas DM, Taylor ML, Hartnell GF, Nemeth MA, Glenn KC, Davist SW (2007) Broiler performance and carcass characteristics when fed diets containing lysine maize (LY038 or LY038 x MON 810), control, or conventional reference maize. Poultry Sci 86:2152–2161

    Article  CAS  Google Scholar 

  • Mainieri D, Rossi M, Archinti M, Bellucci M, De Marchis F, Vavassori S, Pompa A, Arcioni S, Vitale A (2004) Zeolin. A new recombinant storage protein constructed using maize γ-zein and bean phaseolin. Plant Physiol 136:3447–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCourt JA, Duggleby RG (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31(2):173–210

    Article  CAS  PubMed  Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145(3629):279–280

    Article  CAS  PubMed  Google Scholar 

  • Miflin BJ, Cave PR (1972) The control of leucine, isoleucine and valine biosynthesis in a range of higher plants. J Exp Bot 23:511–516

    Article  CAS  Google Scholar 

  • Millward DJ (2016) Plant based sources of proteins and amino acids in Relation to human health. Impacts of agriculture on human health and nutrition–vol. I. Plant-based sources of proteins and amino acids in relation to human health. Encyclop Life Supp Sys. http://www.eolss.net/sample-chapters/c10/E5-21-03-05.pdf. Accessed 6 April 2016

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94:8393–8398

    Article  CAS  PubMed  Google Scholar 

  • Muralla R, Sweeney C, Stepansky A, Leustek T, Meinke D (2007) Genetic dissection of histidine biosynthesis in Arabidopsis. Plant Physiol 144:890–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HC, Hoefgen R, Hesse H (2012) Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. J Exp Bot 63:5991–6000

    Article  CAS  PubMed  Google Scholar 

  • Pan XY, Hasan MM, Li YQ, Liao CS, Zheng HY, Liu RY, Li XX (2015) Asymmetric transcriptomic signatures between the cob and florets in the maize ear under optimal- and low-nitrogen conditions at silking, and functional characterization of amino acid transporters ZmAAP4 and ZmVAAT3. J Exp Bot 66(20):6149–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen C, Bongaerts RJ, Verpoorte R (1993) Purification and characterization of anthranilate synthase from Catharanthus roseus. Eur J Biochem 212:431–440

    Article  CAS  PubMed  Google Scholar 

  • Prat S, Cortadas J, Puigdomenech P, Palau J (1985) Nucleic acid (cDNA) and amino acid sequences of the maize endosperm protein glutelin-2. Nucleic Acids Res 13:1493–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Q, Huang J, Crowley J, Ruschke L, Goldman BS, Wen L, Rapp WD (2011) Metabolically engineered soybean seed with enhanced threonine levels: Biochemical characterization and seed-specific expression of lysine-insensitive variants of aspartate kinases from the enteric bacterium Xenorhabdus bovienii. Plant Biotechnol J 9:193–204

    Article  CAS  PubMed  Google Scholar 

  • Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7:921–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rees JD, Ingle RA, Smith JAC (2009) Relative contributions of nine genes in the pathway of histidine biosynthesis to control of free histidine concentrations in Arabidopsis thaliana. Plant Biotechnol J 7:499–511

    Article  CAS  PubMed  Google Scholar 

  • Riaz B, Chen H, Wang J, Du L, Wang K, Ye X (2019) Overexpression of maize Zmc1 and Zmr transcription factors in wheat regulates anthocyanin biosynthesis in a tissue-specific manner. Int J Mol Sci 20(5806):1–21

    Google Scholar 

  • Rosegrant MR, Ringler C, Sulser TB, Ewing M, Palazzo A, Zhu T, Nelson GC, Koo J, Robertson R, Msangi S, Batka M (2009) Agriculture and food security under global change: prospects for 2025/2050. Background note for supporting the development of CGIAR strategy and Results Framework.” Washington, D.C.: International Food Policy Research Institute

  • Rysava B (1994) Proteins and amino acids in maize kernels. In: Bajaj YPS (ed) Biotechnol Agric Forest. Springer, Berlin, pp 555–570

    Google Scholar 

  • Sardana R, Dukiandjiev S, Giband M, Cheng X, Cowan K, Sauder C, Altosaar I (1996) Construction and rapid testing of synthetic and modified toxin gene sequences CryIA (b & c) by expression in maize endosperm culture. Plant Cell Rep 15:677–681

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RJ, Burr FA, Burr B (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238:960–963

    Article  CAS  PubMed  Google Scholar 

  • Schofield RA, Bi YM, Kant S, Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant Cell Environ 32:271–285

    Article  CAS  PubMed  Google Scholar 

  • Seebauer JR, Moose SP, Fabbri BJ, Crossland LD, Below FE (2004) Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling. Plant Physiol 136:4326–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi M, Kumar S, Singh A, Chaudhary DP (2020) Temporal profiling of essential amino acids in developing maize kernel of normal, opaque-2 and QPM germplasm. Physiol Mol Biol Plants 26:341–351

    Article  CAS  PubMed  Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Industrial Crops and Products. 13: Ind Crop Prod, pp 171–192

  • Singh BK, Shaner DL (1995) Biosynthesis of branched chain amino acids: from test tube to field. Plant Cell 7:935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Widholm JM (1974) Measurement of the five enzymes which convert chorismate to tryptophan in wheat plants (Triticum aestivum L.). Physiol Plant 32:362–366

    Article  Google Scholar 

  • Su YH, Frommer W, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from arabidopsis. Plant Physiol 136(2):3104–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabe LM, Droux M (2001) Sulfur assimilation in developing lupin cotyledons could contribute 436 significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol 126:176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Z, Xie C, Ma L, Liu L, Jin Y, Dong J, Wang T (2014) Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.). PLoS ONE 9(2):e88310

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai FY, Brotherton JE, Widholm JM (2005) Overexpression of the feedback-insensitive anthranilate synthase gene in tobacco causes tryptophan accumulation. Plant Cell Rep 23:548–556

    Article  CAS  PubMed  Google Scholar 

  • Vyazmensky M, Sella C, Barak Z, Chipman DM (1996) Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry 35:10339–10346

    Article  CAS  PubMed  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H (2006) High level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069–3078

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Woo YM, Kim CS, Larkins BA (2001) Quantitative trait locus mapping of loci influencing elongation factor 1alpha content in maize endosperm. Plant Physiol 125:1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Liu C, Li S, Zhu D, Zhao Q, Yu J (2013) Improved nutritive quality and salt resistance in transgenic maize by simultaneously overexpression of a natural lysine-rich protein gene, SBgLR, and an ERF transcription factor gene, TSRF1. Int J Mol Sci 14(5):9459–9474

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu XR, Kenzior A, Willmot D, Scanlon S, Chen Z, Topin A, He SH, Acevedo A, Folk WR (2007) Altered expression of plant lysyl tRNA synthetase promotes tRNA misacylation and translational recoding of lysine. Plant J 50:627–636

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Holding DR, Messing J (2010) γ-Zeins are essential for endosperm modification in quality protein maize. Proc Natl Acad Sci USA 07(29):12810–12815

    Article  Google Scholar 

  • Yang SH, Moran DL, Jia HW, Bicar EH, Lee M, Scott MP (2002) Expression of a synthetic porcine alphalactalbumin gene in the kernels of transgenic maize. Transgenic Res 11:11–20

    Article  PubMed  Google Scholar 

  • Yonamine I, Yoshida K, Kido K, Nakagawa A, Nakayama H, Shinmyo A (2004) Overexpression 458 of NtHAL3 genes confers increased levels of proline biosynthesis and the enhancement of salt tolerance in cultured tobacco cells. J Exp Bot 55:387–395

    Article  CAS  PubMed  Google Scholar 

  • Young VE, El-Khoury AE, Cynober L (1995) The notion of the nutritional essentiality of amino acids, revisited, with a note on the indispensable amino acid requirements in adults. Amino acid metabolism and therapy in health and nutritional disease, 1st edn. CRC Press, Boca Raton, pp 191–232

    Google Scholar 

  • Yu J, Peng P, Zhang X, Zhao Q, Zhu D, Sun X, Liu J, Ao G (2004) Seed-specific expression of a lysine rich protein sb401 gene significantly increases both lysine and total protein content in maize seeds. Mol Breed 14:1–7

    Article  CAS  Google Scholar 

  • Zhang H, Hou J, Jiang P, Qi S, Xu C, He Q, Ding Z, Wand Z, Zhang K, Li K (2016) Identification of a 467 bp promoter of maize phosphatidylinositol synthase gene (ZmPIS) which confers high-level gene expression and salinity or osmotic stress inducibility in transgenic tobacco. Front Plant Sci 7:42

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu H, Pilon-Smits E, Huang W, Wang P, Wang M, Guo F, Wang Y, Li R, Zhao H, Ni D (2020) Transcriptome-wide analysis of nitrogen-regulated genes in tea plant (Camellia sinensis L. O. Kuntze) and characterization of amino acid transporter CsCAT9.1. Plants 9:1218

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mahmudul Hasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study involved regarding analysis of functional characterization of plant amino acid transporter and no animal system. So, no approval of animal use protocols was required.

Informed consent

No informed consent is required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.M., Rima, R. Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference. Transgenic Res 30, 207–220 (2021). https://doi.org/10.1007/s11248-021-00235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-021-00235-0

Keywords

Navigation