Skip to main content
Log in

A Theoretical Estimate of the Pole-Equator Temperature Difference and a Possible Origin of the Near-Surface Shear Layer

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Convective motions in the deep layers of the solar convection zone are affected by rotation, making the convective heat transport latitude-dependent, but this is not the case in the top layers near the surface. We use the thermal wind balance condition in the deeper layers to estimate the pole–equator temperature difference. Surface observations of this temperature difference can be used for estimating the depth of the near-surface layer within which convection is not affected by rotation. If we require that the thermal wind balance holds in this layer also, then we have to conclude that this must be a layer of strong differential rotation and its characteristics which we derive are in broad agreement with the observational data of the near-surface shear layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Bahcall, J.N., Ulrich, R.K.: 1988, Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys. 60, 297. DOI. ADS.

    Article  ADS  Google Scholar 

  • Balbus, S.A., Bonart, J., Latter, H.N., Weiss, N.O.: 2009, Differential rotation and convection in the Sun. Mon. Not. Roy. Astron. Soc. 400, 176. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S.: 2016, Global seismology of the Sun. Living Rev. Solar Phys. 13, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belvedere, G., Paterno, L.: 1976, Large scale circulation in the convection zone and solar differential rotation. Solar Phys. 47, 525. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, B.P., Browning, M.K., Brun, A.S., Miesch, M.S., Toomre, J.: 2010, Persistent magnetic wreaths in a rapidly rotating Sun. Astrophys. J. 711, 424. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chakraborty, S., Choudhuri, A.R., Chatterjee, P.: 2009, Why does the Sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R.: 2011, The origin of the solar magnetic cycle. Pramana 77, 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R.: 2020, The meridional circulation of the Sun: Observations, theory and connections with the solar dynamo. DOI. arXiv. ADS.

  • D’Silva, S., Choudhuri, A.R.: 1993, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621. ADS.

    ADS  Google Scholar 

  • Durney, B.R., Roxburgh, I.W.: 1971, Inhomogeneous convection and the equatorial acceleration of the Sun. Solar Phys. 16, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Foukal, P., Jokipii, J.R.: 1975, On the rotation of gas and magnetic fields at the solar photosphere. Astrophys. J. Lett. 199, L71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gastine, T., Yadav, R.K., Morin, J., Reiners, A., Wicht, J.: 2014, From solar-like to antisolar differential rotation in cool stars. Mon. Not. Roy. Astron. Soc. 438, L76. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gilman, P.A., Foukal, P.V.: 1979, Angular velocity gradients in the solar convection zone. Astrophys. J. 229, 1179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greer, B.J., Hindman, B.W., Featherstone, N.A., Toomre, J.: 2015, Helioseismic imaging of fast convective flows throughout the near-surface shear layer. Astrophys. J. Lett. 803, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guerrero, G., Smolarkiewicz, P.K., Kosovichev, A.G., Mansour, N.N.: 2013, Differential rotation in solar-like stars from global simulations. Astrophys. J. 779, 176. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hanasoge, S.M., Duvall, T.L., Sreenivasan, K.R.: 2012, Anomalously weak solar convection. Proc. Natl. Acad. Sci. 109, 11928. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hazra, G., Choudhuri, A.R.: 2017, A theoretical model of the variation of the meridional circulation with the solar cycle. Mon. Not. Roy. Astron. Soc. 472, 2728. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hotta, H., Rempel, M., Yokoyama, T.: 2015, High-resolution calculation of the solar global convection with the reduced speed of sound technique. II. Near surface shear layer with the rotation. Astrophys. J. 798, 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karak, B.B., Jiang, J., Miesch, M.S., Charbonneau, P., Choudhuri, A.R.: 2014, Flux transport dynamos: from kinematics to dynamics. Space Sci. Rev. 186, 561. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kippenhahn, R., Weigert, A.: 1990, Stellar Structure and Evolution. ADS.

    Book  Google Scholar 

  • Kitchatinov, L.L.: 2013, Theory of differential rotation and meridional circulation. In: Kosovichev, A.G., de Gouveia Dal Pino, E., Yan, Y. (eds.) Solar and Astrophysical Dynamos and Magnetic Activity, IAU Symposium 294, 399. DOI. ADS.

    Chapter  Google Scholar 

  • Kitchatinov, L.L., Ruediger, G.: 1995, Differential rotation in solar-type stars: revisiting the Taylor-number puzzle. Astron. Astrophys. 299, 446. ADS.

    ADS  Google Scholar 

  • Kuhn, J.R., Libbrecht, K.G., Dicke, R.H.: 1988, The surface temperature of the Sun and changes in the solar constant. Science 242, 908. DOI. ADS.

    Article  ADS  Google Scholar 

  • Matilsky, L.I., Hindman, B.W., Toomre, J.: 2019, The role of downflows in establishing solar near-surface shear. Astrophys. J. 871, 217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Matilsky, L.I., Hindman, B.W., Toomre, J.: 2020, Revisiting the Sun’s strong differential rotation along radial lines. Astrophys. J. 898, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moreno-Insertis, F.: 1983, Rise times of horizontal magnetic flux tubes in the convection zone of the Sun. Astron. Astrophys. 122, 241. ADS.

    ADS  Google Scholar 

  • Rast, M.P., Ortiz, A., Meisner, R.W.: 2008, Latitudinal variation of the solar photospheric intensity. Astrophys. J. 673, 1209. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruediger, G.: 1989, Differential Rotation and Stellar Convection. Sun and the Solar Stars. ADS.

    Google Scholar 

  • Spruit, H.C.: 1974, A model of the solar convection zone. Solar Phys. 34, 277. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Dipankar Banerjee, Gopal Hazra, Bibhuti Kumar Jha, Leonid Kitchatinov and Bidya Karak for valuable discussions. My research was supported in part by a J.C. Bose Fellowship awarded by the Department of Science and Technology, Government of India. I thank an anonymous referee for very valuable comments, which helped greatly in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Rai Choudhuri.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: On Differentiating Entropy Along an Ioschore

Appendix A: On Differentiating Entropy Along an Ioschore

The difference of specific entropy \(\Delta S\) given by Equation 5 refers to an isochore over which \(\rho \) does not vary. If \(l\) is the length measured along an isochore, then the entropy difference between two points on an isochore should be given be

$$ \Delta S = \frac{d S}{dl} \Delta l. $$
(A.1)

From the chain rule of partial differentiation, it follows that

$$ \frac{d S}{dl} = \left (\frac{\partial S}{\partial r} \right )_{ \theta } \frac{d r}{dl} + \left (\frac{\partial S}{\partial \theta } \right )_{r} \frac{d \theta }{dl}. $$

It is easy to argue that the first term in this equation is going to be negligible. Efficient convection tends to homogenize \(S\) in the radial direction so that \((\partial S/ \partial r)_{\theta } \approx 0\). Since the rotational flattening of the Sun is very small, we expect the isochoric surfaces to be very nearly spherical so that \(d r/dl\) is also expected to be very small. Since the first term is a product of two small terms, we can write

$$ \frac{d S}{dl} \approx \left (\frac{\partial S}{\partial \theta } \right )_{r} \frac{d \theta }{dl}. $$

Substituting this in Equation A.1, we get

$$ \Delta S \approx \left (\frac{\partial S}{\partial \theta } \right )_{r} \Delta \theta . $$
(A.2)

If we take \(\Delta \theta = \pi /2\) for the pole–equator difference, then Equation A.2 leads to Equation 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, A.R. A Theoretical Estimate of the Pole-Equator Temperature Difference and a Possible Origin of the Near-Surface Shear Layer. Sol Phys 296, 37 (2021). https://doi.org/10.1007/s11207-021-01784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01784-7

Keywords

Navigation