Skip to main content
Log in

An experimental study on the control of plug nozzle jets

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Experimental studies are performed for the near- and far-field characteristics of a plug nozzle jet with the objective to see the effect of truncation of the plug on mean flow characteristics of the jet and its control using vortex generators (VGs). To this end, the plug is truncated at 50%, 40%, and 30% of the axial length from the throat, and mean flow characteristics are studied by the schlieren technique and a pitot pressure survey. Nozzle pressure ratio (NPR) is varied from 2 to 8 for a Mach 1.8 nozzle designed to give correctly expanded flow at NPR 5.74. During over-expansion mode, all the truncation levels are observed to increase core length and strengthen shock cells of the jet, whereas, during under-expansion, truncation up to 50% of the plug is not found to alter the core length. To promote mixing, two rectangular VGs of different aspect ratios but same blockage area of 2% are attached to the base of the truncated plugs. The influence of pressure ratio on the flow structure of controlled and uncontrolled jets is discussed in detail. Results have shown VGs to be effective in mixing enhancement and weakening of shock cells over the nozzle pressure ratios studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hagemann, G., Immich, H., Nguyen, T.V., Dumnov, G.E.: Advanced rocket nozzles. J. Propul. Power 14, 620–634 (1998). https://doi.org/10.2514/2.5354

    Article  Google Scholar 

  2. Arnold, G.A., Rolls-Royce, P.L.C.: Jet-propulsion nozzle for use at supersonic jet velocities. U.S. Patent 2,683,962 (1954)

  3. Rommel, T., Hagemann, G., Schley, C.A., Krulle, G., Manski, D.: Plug nozzle flowfield analysis. J. Propul. Power 13, 629–634 (1997). https://doi.org/10.2514/2.5227

    Article  Google Scholar 

  4. Nasuti, F., Onofri, M.: Theoretical analysis and engineering modeling of flowfields in clustered module plug nozzles. J. Propul. Power 15(4), 544–551 (1999). https://doi.org/10.2514/2.5477

    Article  Google Scholar 

  5. Humphreys, R.P., Thompson, H.D., Hoffmann, J.D.: Design of maximum thrust plug nozzles for fixed inlet geometry. AIAA J. 9(8), 1581–1587 (1971). https://doi.org/10.2514/3.49960

    Article  Google Scholar 

  6. Migdal, D.: Supersonic annular nozzles. J. Spacecr. Rockets 9(1), 3–6 (1972). https://doi.org/10.2514/6.1971-43

  7. Ito, T., Fujii, K., Hayashi, A.K.: Computations of axisymmetric plug-nozzle flowfields: flow structures and thrust performance. J. Propul. Power 18(2), 254–260 (2002). https://doi.org/10.2514/2.5964

    Article  Google Scholar 

  8. Sutton, G.P.: History of liquid propellant rocket engines in the United States. J. Propul. Power 19(6), 978–1007 (2003). https://doi.org/10.2514/2.6942

    Article  Google Scholar 

  9. Hagemann, G., Immich, H., Terhardt, M.: Flow phenomena in advanced rocket nozzles-the plug nozzle. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, AIAA Paper 1998-3522 (1998). https://doi.org/10.2514/6.1998-3522

  10. Wisse, M.E.N., Bannink, W.J.: Half model restrictions for linear plug nozzle testing. AIAA J. 39(11), 2148–2157 (2001). https://doi.org/10.2514/2.1211

    Article  Google Scholar 

  11. Ruf, J., McConaughey, P.: The plume physics behind aerospike nozzle altitude compensation and slipstream effect. 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, AIAA Paper 1997-3218 (1997). https://doi.org/10.2514/6.1997-3218

  12. Eilers, S.D., Wilson, M.D., Whitmore, S.A., Peterson, Z.W.: Side-force amplification on an aerodynamically thrust-vectored aerospike nozzle. J. Propul. Power 28(4), 811–819 (2012). https://doi.org/10.2514/1.B34381

    Article  Google Scholar 

  13. Verma, S.B., Viji, M.: Linear-plug flowfield and base pressure development in freestream flow. J. Propul. Power 27(6), 1247–1258 (2011). https://doi.org/10.2514/1.B34195

    Article  Google Scholar 

  14. Kapilavai, D., Tapee, J., Sullivan, J., Sullivan, J., Merkle, C.L., Wayman, T.R., Conners, T.R.: Experimental testing and numerical simulations of shrouded plug-nozzle flowfields. J. Propul. Power 28(3), 530–544 (2012). https://doi.org/10.2514/1.B34237

    Article  Google Scholar 

  15. Karthikeyan, N., Kumar, A., Verma, S.B., Venkatakrishnan, L.: Effect of spike truncation on the acoustic behavior of annular aerospike nozzles. AIAA J. 51(9), 2168–2182 (2013). https://doi.org/10.2514/1.J052139

    Article  Google Scholar 

  16. Verma, S.B., Viji, M.: Freestream effects on base pressure development of an annular plug nozzle. Shock Waves 21(2), 163–171 (2011). https://doi.org/10.2514/6.2009-5148

    Article  Google Scholar 

  17. Takahashi, H., Tomioka, S., Sakuranaka, N., Tomita, T., Kuwamori, K., Masuya, G.: Influence of external flow on plume physics of clustered linear aerospike nozzles. J. Propul. Power 30(5), 1199–1212 (2014). https://doi.org/10.2514/1.B35227

    Article  Google Scholar 

  18. Tam, C.K.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27(1), 17–43 (1995). https://doi.org/10.1146/annurev.fl.27.010195.000313

    Article  Google Scholar 

  19. Bradbury, L.J.S., Khadem, A.H.: The distortion of a jet by tabs. J. Fluid Mech. 70(4), 801–813 (1975). https://doi.org/10.1017/S0022112075002352

    Article  Google Scholar 

  20. Ahuja, K., Brown, W.: Shear flow control by mechanical tabs. 2nd Shear Flow Conference, Tempe, AZ, AIAA Paper 1989-994 (1989). https://doi.org/10.2514/6.1989-994

  21. Samimy, M., Zaman, K.B.M.Q., Reeder, M.F.: Effect of tabs on the flow and noise field of an axisymmetric jet. AIAA J. 31(4), 609–619 (1993). https://doi.org/10.2514/3.11594

    Article  Google Scholar 

  22. Zaman, K.B.M.Q.: Streamwise vorticity generation and mixing enhancement in free jets by ’Delta-Tabs’. 3rd Shear Flow Conference, Orlando, FL, AIAA Paper 1993-3253 (1993). https://doi.org/10.2514/6.1993-3253

  23. Lovaraju, P., Rathakrishnan, E.: Subsonic and transonic jet control with cross-wire. AIAA J. 44(11), 2700–2705 (2006). https://doi.org/10.2514/1.17637

    Article  Google Scholar 

  24. Khan, A., Akram, S., Kumar, R.: Experimental study on enhancement of supersonic twin-jet mixing by vortex generators. Aerosp. Sci. Technol. 96, 105521 (2020). https://doi.org/10.1016/j.ast.2019.105521

  25. Rathakrishnan, E.: Experimental studies on the limiting tab. AIAA J. 47(10), 2475–2485 (2009). https://doi.org/10.2514/1.43790

    Article  Google Scholar 

  26. Khan, A., Kumar, R.: Experimental study and passive control of overexpanded plug nozzle jet. J. Spacecr. Rockets 55(3), 778–782 (2017). https://doi.org/10.2514/1.A34039

    Article  Google Scholar 

  27. Khan, A., Panthi, R., Kumar, R., Ibrahim, S.M.: Experimental investigation of the effect of extended cowl on the flow field of planar plug nozzles. Aerosp. Sci. Technol. 88, 208–221 (2019). https://doi.org/10.1016/j.ast.2019.03.011

    Article  Google Scholar 

  28. Angelino, G.: Approximate method for plug nozzle design. AIAA J. 2(10), 1834–1835 (1964). https://doi.org/10.2514/3.2682

    Article  Google Scholar 

  29. Khan, A., Kumar, R., Verma, S.B., Manisankar, C.: Effect of cross wire tab orientation on twin jet mixing characteristics. Exp. Therm. Fluid Sci. 99, 344–356 (2018). https://doi.org/10.1016/j.expthermflusci.2018.08.005

    Article  Google Scholar 

  30. Liepmann, H.W., Puckett, A.E.: Introduction to Aerodynamics of a Compressible Fluid, vol. 2. Wiley, New York (1947)

    MATH  Google Scholar 

  31. Kane, E.D., Maslach, G.J.: Impact-pressure interpretation in a rarefied gas at supersonic speeds. NACA Technical note 2210 (1950)

  32. Rathakrishnan, E.: Instrumentation, Measurements, and Experiments in Fluids. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  33. Chiranjeevi Phanindra, B., Rathakrishnan, E.: Corrugated tabs for supersonic jet control. AIAA J. 48(2), 453–465 (2010). https://doi.org/10.2514/1.44896

  34. Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1(1), 3–17 (1988). https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  35. Bourgoing, A., Reijasse, P.: Experimental analysis of unsteady separated flows in a supersonic planar nozzle. Shock Waves 14(4), 251–258 (2005). https://doi.org/10.2514/1.44896

  36. Xiao, Q., Tsai, H.M., Papamoschou, D.: Numerical investigation of supersonic nozzle flow separation. AIAA J. 45(3), 532–541 (2007). https://doi.org/10.2514/1.20073

    Article  Google Scholar 

  37. Wasko, R.A.: Performance of annular plug and expansion-deflection nozzles including external flow effects at transonic Mach numbers. NASA TN D-4462 (1968)

Download references

Acknowledgements

The research performed in the Department of Aerospace Engineering at the Indian Institute of Technology Kanpur was supported by the Science and Engineering Research Board (SERB) through the Grant SERB/AE/2015380. We sincerely acknowledge the constructive suggestions made by K. Suzuki of the University of Tokyo, Japan. We also acknowledge the help and support provided by S. Mishra in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Additional information

Communicated by J. Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Bhesania, A.S. & Kumar, R. An experimental study on the control of plug nozzle jets. Shock Waves 31, 31–47 (2021). https://doi.org/10.1007/s00193-021-00989-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-00989-w

Keywords

Navigation