Skip to main content
Log in

The concealment of accelerated information is possible

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The possibility of masking an accelerated two-qubit system by using a minimum number of qubits is discussed. It is shown that the information may be masked in either entangled local states or product non-local separable states. We examine that each partition of these states satisfies the masking conditions. Due to the presence of non-local separable partition, one may consider that it is a type of quantum data hiding scheme. The local/non-local information encoded in the masked entangled state is robust against the decoherence of the acceleration process. The possibility of estimating the acceleration parameter via the entangled/separable masked state increases as the initial entanglement value increases. The efficiency of the masking process is examined by quantifying the fidelity of the accelerated state and its subsystems. It is shown that the fidelity of the masked state is maximum at small initial acceleration, while the minimum fidelity is more than 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Beige, A., Englert, B.-G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)

    Article  ADS  Google Scholar 

  2. Jiang, D., Chen, Y., Gu, X., Xie, L., Chen, L.: Deterministic secure quantum communication using a single d-level system. Sci. Rep. 7, 44934 (2017)

    Article  ADS  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Fink, M., Rodriguez, A., Handsteiner, J., Ziarkash, A., Steinlechner, F., Scheidl, T., Fuentes, I., Pienaar, J., Ralph, T.C., Ursin, R.: Experimental test of photonic entanglement in accelerated reference frames. Nat. Commun. 8(1), 1–6 (2017)

    Article  Google Scholar 

  5. Schumacher, B.: Quantum coding. Phys. Rev. A 51(4), 2738–2747 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Modi, K., Pati, A.K., Sen, A., Sen, U.: Masking quantum information is impossible. Phys. Rev. Lett. 120(23), 230501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ghosh, T., Sarkar, S., Behera, B.K., Panigrahi, P.K.: Masking of quantum information is possible (2019). arXiv preprint arXiv:1910.00938

  8. Li, M.S., Wang, Y.L.: Masking quantum information in multipartite scenario. Phys. Rev. A 98(6), 062306 (2018)

    Article  ADS  Google Scholar 

  9. Liang, X.B., Li, B., Fei, S.M., Fan, H.: Impossibility of masking a set of quantum states of nonzero measure. Phys. Rev. A 101(4), 042321 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Liang, X.B., Li, B., Fei, S.M.: Complete characterization of qubit masking. Phys. Rev. A 100(3), 030304 (2019)

    Article  ADS  Google Scholar 

  11. Lie, S.H., Kwon, H., Kim, M.S., Jeong, H.: Unconditionally secure qubit commitment scheme using quantum maskers (2019). arXiv preprint arXiv:1903.12304

  12. Li, M.-S., Modi, K.: Probabilistic and approximate masking of quantum information. Phys. Rev. A 102, 022418 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Fuentes, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95(12), 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Alsing, P.M., Fuentes, I., Mann, R.B., Tessier, T.E.: Entanglement of dirac fields in noninertial frames. Phys. Rev. A At. Mol. Opt. Phys. 74(3), 1–15 (2006)

    Article  Google Scholar 

  15. Moradi, S.: Distillability of entanglement in accelerated frames. Phys. Rev. A At. Mol. Opt. Phys. 79(6), 064301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Landulfo, A.G.S., Matsas, G.E.A.: Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A At. Mol. Opt. Phys. 80(3), 032315 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A At. Mol. Opt. Phys. 81(3), 032320 (2010)

    Article  ADS  Google Scholar 

  18. Metwally, N.: Entanglement of simultaneous and non-simultaneous accelerated qubit-qutrit systems. Quantum Inf. Comput. 16(5–6), 530–542 (2016)

    MathSciNet  Google Scholar 

  19. Shi, J., Chen, J., He, J., Wu, T., Ye, L.: Inevitable degradation and inconsistency of quantum coherence in a curved space-time. Quantum Inf. Process. 18, 300 (2019)

    Article  ADS  Google Scholar 

  20. Metwally, N.: Usefulness classes of traveling entangled channels in noninertial frames. Int. J. Mod. Phys. B 27(28), 1350155 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hamdoun, H., Sagheer, A.: Information security through controlled quantum teleportation networks. Digit. Commun. Netw. 6, 463–470 (2020)

    Article  Google Scholar 

  22. Metwally, N., Sagheer, A.: Quantum coding in non-inertial frames. Quantum Inf. Process. 13(3), 771–780 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bradler, K., Hayden, P., Panangaden, P.: Private information via the Unruh effect. J. High Energy Phys. 8, 2008 (2009)

    MathSciNet  Google Scholar 

  24. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7(5–6), 459–468 (2007)

  25. Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A At. Mol. Opt. Phys. 83(5), 1 (2011)

    Article  Google Scholar 

  26. Shi, J.-D., Wang, D., Ye, L.: Comparative explorations of the revival and robustness for quantum dynamics under decoherence channels. Quantum Inf. Process. 15, 1649–1659 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  28. Shi, Jia Dong, Wang, Dong, Ma, Wen Chao, Ye, Liu: Enhancing quantum correlation in open-system dynamics by reliable quantum operations. Quantum Inf. Process. 14, 3569–3579 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Metwally, N.: Quantum filtering of accelerated qubit-qutrit system. Opt. Int. J. Light Electron Opt. 178, 524–531 (2019)

    Article  Google Scholar 

  30. Shi, J.-D., Xu, S., Ma, W.-C., Song, X.-K., Ye, L.: Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements. Quantum Inf. Process. 14, 1387–1397 (2015)

    Article  ADS  Google Scholar 

  31. Metwally, N.: Protecting the handled information in Smart Cities by freezing the accelerated information. ILT, Smart Cities Symposium, Bahrain 2018 (2018) (6 pp.). https://doi.org/10.1049/cp.2018.1416

  32. Shi, J., Wang, Y., Liu, C., He, J., Yu, L., Tao, W.: Freezing and revival of quantum coherence in decoherent reservoir. Quantum Inf. Process. 19, 385 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  34. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. Sect. A Gen. At. Solid State Phys. 222(1–2), 21–25 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum fisher information in noninertial frames. Phys. Rev. A At. Mol. Opt. Phys. 89(4), 1–7 (2014)

    Article  Google Scholar 

  36. Metwally, N.: Enhancing entanglement, local and non-local information of accelerated two-qubit and two-qutrit systems via weak-reverse measurements. Eur. Phys. Lett. 116(6), 60006 (2016)

    Article  ADS  Google Scholar 

  37. Abd-Rabbou, M.Y., Metwally, N., Ahmed, M.M.A., Obada, A.S.F.: Suppressing the information losses of accelerated qubit-qutrit system. Int. J. Quantum Inf. 17(4), 1950032 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for their reports which have improved our results. This work is supported by the Academy of Scientific research and Technology (ASRT), Egypt ScienceUp Grant No. 6538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Metwally.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelwahab, A.G., Ghwail, S.A., Metwally, N. et al. The concealment of accelerated information is possible. Quantum Inf Process 20, 71 (2021). https://doi.org/10.1007/s11128-021-03009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03009-z

Keywords

Navigation