Skip to main content
Log in

Recovery and enhancement of unknown aperiodic binary signal by adaptive aperiodic stochastic resonance

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, the system with fractional power nonlinearity is introduced into the theory of aperiodic stochastic resonance (ASR). The fractional exponent is a key parameter and its effect on the ASR phenomenon excited by aperiodic binary signal is investigated in this system. Compared to the classical bistable system, the system with fractional power nonlinearity shows better performance. It can adjust not only the noise intensity but also the fractional exponent to enhance weak signal. In the field of signal transmission, pure aperiodic binary signal is usually submerged in the noise and the signal is unknown. Thus, an effective method is proposed based on ASR and moving average. By the method, the unknown aperiodic binary signal can be recovered in the noise background. To improve the efficiency of the signal recovery, the adaptive ASR is realised with the help of adaptive particle swarm optimisation (APSO) algorithm to optimise the parameters. The method may provide some reference to the engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R Benzi, A Sutera and A Vulpiani, J. Phys. A 14, L453 (1981)

    Article  ADS  Google Scholar 

  2. R Benzi, G Parisi, A Sutera and A Vulpiani, Tellus 34, 10 (1982)

    Article  ADS  Google Scholar 

  3. R Benzi, G Parisi, A Sutera and A Vulpiani, SIAM SIAM J. Appl. Math. 43, 565 (1983)

    Article  Google Scholar 

  4. B McNamara, K Wiesenfeld and R Roy, Phys. Rev. Lett. 60, 2626 (1988)

    Article  ADS  Google Scholar 

  5. A Longtin, J. Stat. Phys. 70, 309 (1993)

    Article  ADS  Google Scholar 

  6. M I Dykman, D G Luchinsky, R Mannella, P V McClintock, N D Stein and N G Stocks, Nuovo Cimento D 17, 661 (1995)

    Article  ADS  Google Scholar 

  7. L Gammaitoni, P Hänggi, P Jung and F Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  8. S M Soskin, R Mannella and P V E McClintock, Phys. Rep. 373, 247 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. J J Collins, C C Chow and T T Imhoff, Phys. Rev. E 52, R3321 (1995)

    Article  ADS  Google Scholar 

  10. J J Collins, C C Chow, A C Capela and T T lmhoff, Phys. Rev. E 54, 5575 (1996)

    Article  ADS  Google Scholar 

  11. J J Collins, T T Imhoff and P Grigg, J. Neurophysiol. 76, 642 (1996)

    Article  Google Scholar 

  12. S Barbay, G Giacomelli and F Marin, Phys. Rev. E 61, 157 (2000)

    Article  ADS  Google Scholar 

  13. J Liu and Z Li, IET Image Process. 9, 1033 (2015)

    Article  Google Scholar 

  14. Y Qin, Y Tao, Y He and B Tang, J. Sound Vib. 333, 7386 (2014)

    Article  ADS  Google Scholar 

  15. Y Liu, J Liang, S B Jiao, N Xiao and Z Zhang, Pramana – J. Phys. 89: 73 (2017)

    Article  ADS  Google Scholar 

  16. Z Qiao, Y Lei, J Lin and F Jia, Mech. Syst. Signal Process. 84, 731 (2017)

    Article  ADS  Google Scholar 

  17. S Lu, Q He, H Zhang and F Kong, Mech. Syst. Signal Process. 85, 82 (2017)

    Article  ADS  Google Scholar 

  18. J H Yang, M A F Sanjuán, P P Chen and H G Liu, Eur. Phys. J. Plus 132, 432 (2017)

    Article  Google Scholar 

  19. S Zhang, Y Yao, Z Zhu, J Yang and G Shen, Eur. Phys. J. Plus 134, 115 (2019)

    Article  ADS  Google Scholar 

  20. C K Kwuimy and B N Nbendjo, Phys. Lett. A 375, 3442 (2011)

    Article  ADS  Google Scholar 

  21. H Li, X Liao, S Ullah and L Xiao, Nonlinear Anal.: Real 13, 2724 (2012)

    Article  Google Scholar 

  22. C K Kwuimy, G Litak and C Nataraj, Nonlinear Dyn. 80, 491 (2015)

    Article  Google Scholar 

  23. S Barbay, G Giacomelli and F Marin, Phys. Rev. Lett. 85, 4652 (2000)

    Article  ADS  Google Scholar 

  24. S Barbay, G Giacomelli and F Marin, Phys. Rev. E 63, 051110 (2001)

    Article  ADS  Google Scholar 

  25. F Duan, D Rousseau and F Chapeau-Blondeau, Phys. Rev. E 69, 011109 (2004)

    Article  ADS  Google Scholar 

  26. F Duan and D Abbott, Physica A 376, 173 (2007)

    Article  ADS  Google Scholar 

  27. N H Hung and Y Zhaojun, J. Bus. Manag. 2, 22 (2013)

    Google Scholar 

  28. B Xu, F Duan, R Bao and J Li, Chaos Solitons Fractals 13, 633 (2002)

    Article  ADS  Google Scholar 

  29. B Xu, F Duan and F Chapeau-Blondeau, Phys. Rev. E 69, 061110 (2004)

    Article  ADS  Google Scholar 

  30. Y G Leng, Y S Leng, T Y Wang and Y Guo, J. Sound Vib. 292, 788 (2006)

    Article  ADS  Google Scholar 

  31. Q He and J Wang, Digit. Signal Process. 22, 614 (2012)

    Article  MathSciNet  Google Scholar 

  32. Q He, J Wang, Y Liu, D Dai and F Kong, Mech. Syst. Signal Process. 28, 443 (2012)

    Article  ADS  Google Scholar 

  33. S Mitaim and B Kosko, Proc. IEEE 86, 2152 (1998)

    Article  Google Scholar 

  34. Z H Zhan, J Zhang, Y Li and H S H Chung, IEEE Trans. Syst. Man Cybern. B 39, 1362 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jianhua Yang for providing useful directions and comments to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Wu, C. Recovery and enhancement of unknown aperiodic binary signal by adaptive aperiodic stochastic resonance. Pramana - J Phys 95, 36 (2021). https://doi.org/10.1007/s12043-020-02072-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02072-y

Keywords

PACS Nos

Navigation