Skip to main content
Log in

Stimulated Raman Scattering in a Calcite Single Crystal at Picosecond Laser Excitation

  • NONLINEAR OPTICAL SPECTROSCOPY
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Spectra of multiparticle parametric stimulated Raman scattering in a calcite single crystal are investigated. The single crystal is excited by ultrashort pulses of the Nd3+:YAG laser with the lasing wavelengths of 532 and 1064 nm. A comb of Stokes and anti-Stokes components is observed in the visible and near infrared regions. Energy dependences are constructed for several Stokes and anti-Stokes satellites. A possibility of collinear propagation of Stokes and anti-Stokes components in forward scattering is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. N. Rutt and J. H. Nicola, “Raman spectra of carbonates of calcite structure,” J. Phys. C: Solid State Phys. 7 (24), 4522–4528 (1974). https://doi.org/10.1088/0022-3719/7/24/015

    Article  ADS  Google Scholar 

  2. S. P. S. Porto, J. A. Giordmaine, and T. C. Damen, “Depolarization of Raman scattering in calcite,” Phys. Rev. 147 (2), 608–611 (1966). https://doi.org/10.1103/PhysRev.147.608

    Article  ADS  Google Scholar 

  3. M. De La Pierre, C. Carteret, L. Maschio, E. André, R. Orlando, and R. Dovesi, “The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study,” J. Chem. Phys. 140 (16), 164509 (2014). https://doi.org/10.1063/1.4871900

    Article  ADS  Google Scholar 

  4. V. A. Saleev and N. V. Kalinin, “Ab initio modeling of Raman and infrared spectra of calcite,” Comp. Opt. 42 (2), 263–266 (2018).

    Article  Google Scholar 

  5. S. Bhagavantam, “Effect of crystal orientation on the Raman spectrum of calcite,” Proc. Indian Acad. Sci., Sect. A. 11 (1), 62–71 (1940). https://doi.org/10.1007/BF03050551

    Article  Google Scholar 

  6. G. Eckhardt, D. P. Bortfeld, and M. Geller, “Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and α-sulfur single crystals,” Appl. Phys. Lett. 3 (8), 137–138 (1963). https://doi.org/10.1063/1.1753903

    Article  ADS  Google Scholar 

  7. R. Chiao and B. P. Stoicheff, “Angular dependence of maser-stimulated Raman radiation in calcite,” Phys. Rev. Lett. 12 (11), 290–292 (1964). https://doi.org/10.1103/PhysRevLett.12.290

    Article  ADS  Google Scholar 

  8. W.B. Gandrud and H.W. Moos, “Temperature dependence of stimulated Raman emission in calcite,” J. Appl. Phys. 38(1), 421–422 (1967).

    Article  ADS  Google Scholar 

  9. V. S. Gorelik, A. D. Kudryavtseva, N. V. Tcherniega, and A. I. Vodchits, “Stimulated globular scattering of laser radiation in photonic crystals: Temperature dependences,” J. Russ. Laser Res. 28 (6), 567–575 (2007). https://doi.org/10.1007/s10946-007-0043-2

    Article  Google Scholar 

  10. A. I. Sokolovskaya, A. D. Kudryavtseva, G. L. Brekhovskikh, and M. M. Sushchinskii, “Effect of temperature on stimulated Raman scattering light in substances with various Kerr constants,” Sov. Phys.-JETP. 30 (4), 633–636 (1969).

    ADS  Google Scholar 

  11. J. A. Glordmaine and W. Kaiser, “Light scattering by coherently driven lattice vibrations,” Phys. Rev. 144 (2), 676–688 (1966). https://doi.org/10.1103/PhysRev.144.676

    Article  ADS  Google Scholar 

  12. R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8 (10), 404–405 (1962). https://doi.org/10.1103/PhysRevLett.8.404

    Article  ADS  Google Scholar 

  13. V. S. Gorelik, V. I. Pustovoit, V. O. Gladyshev, A. N. Morozov, V. L. Kauts, E. A. Sharandin, I. V. Fomin, and D. I. Portnov, “Generation and detection of high frequency gravitational waves at intensive electromagnetic excitation,” J. Phys.: Conf. Ser. 1051, 012001 (2018). https://doi.org/10.1088/1742-6596/1051/1/012001

    Article  Google Scholar 

  14. V. G. Bespalov, Yu. N. Efimov, and D. I. Staselko, “Temporal and spectral structure of backward stimulated Raman scattering in calcite,” in Proceeding of the “Mode-Locked and Other Ultrashort Laser Designs, Amplifiers, and Applications” (Quebec, Canada, August 1620, 1993), Vol. 2041 (SPIE, 1994). https://doi.org/10.1117/12.165637

  15. L. Bohat, P. Becker, H. Rhee, O. Lux, H.J. Eichler, H. Yoneda, and A. A. Kaminskii, “Detection of a new SRS-promoting phonon mode and cross-cascaded χ(3)‑nonlinear lasing in single crystals of calcite (trigonal CaCO3),” Laser Photonics Rev. 6 (5), 690–701 (2012). https://doi.org/10.1002/lpor.201200028

    Article  ADS  Google Scholar 

  16. A. A Kaminskii, L. Bohatý, P. Becker, H. J. Eichler, and H. Rhee, “Manifestations of new χ(3)-nonlinear laser interactions in calcite (CaCO3) single crystals under one-micron picosecond pumping: more than two-octave spanned Stokes and anti-Stokes multi-wavelength comb and third harmonic generation via cascaded parametric lasing,” Laser Phys. Lett. 7 (2), 142 (2010). https://doi.org/10.1002/lapl.200910126

    Article  ADS  Google Scholar 

  17. S. N. Smetanin, M. Jelínek, V. Kubeček, and H. Jelínková, “Low-threshold collinear parametric Raman comb generation in calcite under 532 and 1064 nm picosecond laser pumping,” Laser Phys. Lett. 12 (9), 095403 (2015). https://doi.org/10.1088/1612-2011/12/9/095403

    Article  ADS  Google Scholar 

  18. V. S. Gorelik and A. Yu. Pyatyshev, “Isofrequency temperature anomalies of Raman scattering intensity in quartz crystals,” Phys. Wave Phenom. 27 (3), 178–186 (2019). https://doi.org/10.3103/S1541308X19030026

    Article  ADS  Google Scholar 

  19. V. S. Gorelik and A. Yu. Pyatyshev, “Raman opalescence of a destabilizing soft mode near the phase transition in quartz monocrystals,” J. Raman Spectrosc. 50 (10), 1584–1593 (2019). https://doi.org/10.1002/jrs.5651

    Article  ADS  Google Scholar 

  20. V. S. Gorelik, F. S. Demeshkin, and A. Yu. Pyatyshev, “Research of the isofrequency temperature dependences of the Raman spectra near the phase transition point in quartz,” J. Phys.: Conf. Ser. 1348 (1), 012051 (2019). https://doi.org/10.1088/1742-6596/1348/1/012051

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 19-12-00242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Demeshkin.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladyshev, V.O., Gorelik, V.S., Sharandin, E.A. et al. Stimulated Raman Scattering in a Calcite Single Crystal at Picosecond Laser Excitation. Phys. Wave Phen. 28, 382–388 (2020). https://doi.org/10.3103/S1541308X20040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20040044

Navigation