Skip to main content
Log in

Sound Focusing Capability of a CO2 Gas-Filled Cuboid

  • GENERATION AND TRANSFORMATION OF SOUND WAVES
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The ability of focus waves with concave or convex surfaces is well known both in optics and in acoustics. Nowadays, the possibility of beamforming sound with flat lenses is a hot topic because of its application in different areas such as biomedical engineering or non-destructive techniques. In this paper, we propose a gas filled cuboid lens that has a different sound speed than that of the surrounding medium (air in our case) as a beamforming acoustic device. This constitutes an experimental visualization of the capability of sound focusing with flat surfaces lens and allows understanding the corresponding physic phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Atkinson, Elementary Treatise on Physics, Experimental and Applied, 11th ed. (New York, 1882), p. 237.

  2. J. M. Kendall, “Acoustic lens is gas-filled,” NASA Tech. Briefs. 5, 345–346 (1980).

    Google Scholar 

  3. D. C. Thomas, K. L. Gee, and R. S. Turley, “A balloon lens: Acoustic scattering from a penetrable sphere,” Am. J. Phys. 77 (3), 197–203 (2009). https://doi.org/10.1119/1.3041420

    Article  ADS  Google Scholar 

  4. The Unesco Source Book for Science Teaching (Oxford, New Delhi, 1973).

  5. D. C. Calvo, A. L. Thangawng, M. Nicholas, and C. N. Layman, “Thin Fresnel zone plate lenses for focusing underwater sound,” Appl. Phys. Lett. 107 (1), 014013 (2015). https://doi.org/10.1063/1.4926607

    Article  Google Scholar 

  6. F. Cervera, J.V. Sánchez-Pérez, R. Martínez-Sala, C. Rubio, F. Meseguer, C. López, D. Caballero and J. Sánchez-Dehesa, “Refractive acoustic device for airborne sound,” Phys. Rev. Lett. 88 (2), 023902 (2001). https:/doi.org/https://doi.org/10.1103/PhysRevLett.88.023902

    Article  ADS  Google Scholar 

  7. A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier, and J. H. Page, “Experimental and theoretical evidence for subwavelength imaging in phononic crystals,” Phys. Rev. Lett. 102 (15), 154301 (2009). https://doi.org/10.1103/PhysRevLett.102.154301

    Article  ADS  Google Scholar 

  8. P. Peng, B. Xiao, and Y. Wu, “Flat acoustic lens by acoustic grating with curled slits,” Phys. Lett. A. 378 (45), 3389–3392 (2014). https://doi.org/10.1016/j.physleta.2014.09.042

    Article  ADS  Google Scholar 

  9. K. Tang, C. Qiu, M. Ke, J. Lu, Y. Ye, and Z. Liu, “Anomalous refraction of airborne sound through ultrathin metasurfaces,” Sci. Rep. 4, 6517 (2015). https://doi.org/10.1038/srep06517

    Article  Google Scholar 

  10. Y. Li, B. Liang, X. Tao, X.-F. Zhu, X.-Y. Zou, and J.-C. Cheng, “Acoustic focusing by coiling up space,” Appl. Phys. Lett. 101 (23), 233508 (2012). https://doi.org/10.1063/1.4769984

    Article  ADS  Google Scholar 

  11. Y. Li, B. Liang, Z.-M. Gun, X.-Y. Zou, and J.-C. Cheng, “Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces,” Sci. Rep. 3, 2546 (2013). https://doi.org/10.1038/srep02546

    Article  Google Scholar 

  12. M. Molerón, M. Serra-Garcia, and C. Daraio, “Acoustic Fresnel lenses with extraordinary transmission,” Appl. Phys. Lett. 105 (11), 114109 (2014). https://doi.org/10.1063/1.4896276

    Article  ADS  Google Scholar 

  13. Z. Lin, X. Guo, J. Tu, J. Cheng, J. Wu, and D. Zhang, “Acoustic focusing of sub-wavelength scale achieved by multiple Fabry–Perot resonance effect,” J. Appl. Phys. 115 (10), 104504 (2014). https://doi.org/10.1063/1.4868629

    Article  ADS  Google Scholar 

  14. R. A. Jahdali and Y. Wu, “High transmission acoustic focusing by impedance-matched acoustic meta-surfaces,” Appl. Phys. Lett. 108 (3), 031902 (2016). https://doi.org/10.1063/1.4939932

    Article  ADS  Google Scholar 

  15. C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I.V. Minin, “Wavelength-scale gas-filled cuboid acoustic lens with diffraction limited focusing,” Results Phys. 12, 1905–1908 (2019). https://doi.org/10.1016/j.rinp.2019.02.011

    Article  ADS  Google Scholar 

  16. C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Sound focusing of a wavelength-scale gas-filled flat lens,” Europhys. Lett. 123 (6), 64002 (2018). https://doi.org/10.1209/0295-5075/123/64002

    Article  ADS  Google Scholar 

  17. C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Enhancement of pupil-masked wavelength-scale gas-filled flat acoustic lens based on anomaly apodization effect,” Phys. Lett. A. 383 (5), 396–399 (2019). https://doi.org/10.1016/j.physleta.2018.11.014

    Article  ADS  Google Scholar 

  18. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th ed. (Wiley-VCH, 1999).

    Google Scholar 

  19. J. H. Wu, A. Q. Liu, and H. L. Chen, “Exact solutions for free-vibration analysis of rectangular plates using Bessel functions,” J. Appl. Mech. 74 (6), 1247–1251 (2007). https://doi.org/10.1115/1.2744043

    Article  ADS  Google Scholar 

  20. S. Mohamady, R. K. R. Ahmad, A. Montazeri, R. Zahari, and N. A. A. Jalil, “Modeling and eigenfrequency analysis of sound-structure interaction in a rectangular enclosure with finite element method,” Adv. Acoust. Vib. 2009, 371297 (2009). https://doi.org/10.1155/2009/371297

    Article  Google Scholar 

  21. A. W. Leissa, “The free vibration of rectangular plates,” J. Sound Vib. 31 (3), 257–293 (1973). https://doi.org/10.1016/S0022-460X(73)80371-2

    Article  ADS  MATH  Google Scholar 

  22. C. L. M. H. Navier, “Extrait des recherches sur la flexion des plans elastiques,” Bull. Sci. Soc. Philomarhique de Paris. 5, 95–102 (1823).

    Google Scholar 

Download references

Funding

This work was financially supported by the Spanish MINECO through project TEC2015-70939-R and partially was carried out within the framework of the Tomsk Polytechnic University Competitiveness Enhancement Program, Russia. D.T.-S. acknowledges financial support from Ministerio de Ciencia, Innovación y Universidades de España through grant BES-2016-077133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rubio.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ADDITIONAL INFORMATION

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrazó-Serrano, D., Rubio, C., Minin, O.V. et al. Sound Focusing Capability of a CO2 Gas-Filled Cuboid. Phys. Wave Phen. 28, 333–337 (2020). https://doi.org/10.3103/S1541308X2004010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X2004010X

Navigation