Skip to main content
Log in

Amazonite Li–F Granites with REE–Nb–Zr–Th–U Specialization: Geochemistry, Mineralogy, and Isotope Geochronology of the Turga Massif, Eastern Transbaikalia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports major relations and trends determined in the distributions of trace elements and the Sr and Nd isotope composition of leucogranites of the Turga massif in Eastern Transbaikalia. Three varieties of the leucogranites are distinguished: porphyritic biotite granites, equigranular granites with Li-siderophyllite, and amazonite granites that make up small stocks and dikes. All of the rocks define a single Rb–Sr isochron that corresponds to an age of 134 ± 1 Ma at IR(Sr) = 0.71768 ± 22 and MSWD = 1.2, i.e., all of these rocks crystallized within a narrow age span. The porphyritic biotite granites, which are thought to be parental for the leucogranites, crystallized at lower temperatures (710–740°C) than the younger granites with Li-siderophyllite (810–850°C). Moreover, the granites with Li-siderophyllite have elevated Fe concentrations, which is reflected in that their micas are Fe-rich. The leucogranites are enriched in HFSE (270 ± 59 ppm Zr, 337 ± 93 ppm REE, 72 ± 31 ppm Th, and 16 ± 6 ppm U), which is atypical of amazonite granites in the study area. Considered together with very low Sr and low Ti and P concentrations, these compositional features are distinguishing features of A-type granites. The rare-metal granites of the Turga massif are unique in composition: being similar to amazonite granites in mineralized massifs, these rocks carry accessory minerals typical of peralkaline rocks. They contain LREE fluorides and fluorcarbonates (fluocerite, bastnaesite, and parisite), minerals of the pyrochlore and samarskite groups, and minerals of the isostructural group of REE–Y–Zr–Th–U silicate-phosphates. Our data provide grounds for classifying the rare-metal granites of the Turga massif with an unusual transitional geochemical subtype: peraluminous columbite-bearing amazonite granites of elevated alkalinity with peralkaline REE–Nb–Zr–Th–U mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abushkevich, V.S. and Syritso, L.F., Izotopno-geokhimicheskaya model' formirovaniya Li-F-granitov Khangilaiskogo rudnogo uzla v Vostochnom Zabaikal’e (Isotope-geochemical Model of the Formation of Li–F Granites of the Khangilai Ore Cluster in Eastern Transbaikalia), St. Petersburg: Nauka, 2007.

  2. Abushkevich, V.S. and Syritso, L.F., Juvenile component in isotope (Sr, Nd) systems of rare-metal granites of polyformation intrusions (Eastern Transbaikalia), Novye gorizonty v izuchenii protsessov magmo- i rudoobrazovaniya. Materialy nauchnoi konferentsii (New Horizons in Studying Magma and Ore Formation. Proceed. Conf.), Moscow: IGEM RAN, 2010, pp. 326–327.

    Google Scholar 

  3. Badanina, E.V., Syritso, L.F., Volkova, E.V., et al., Composition of Li–F granite melt and its evolution during the formation of the ore-bearing Orlovka Massif in Eastern Transbaikalia, Petrology, 2010, vol. 18, no. 2, pp. 131–157.

    Article  Google Scholar 

  4. Berezovikov, I.P. and Lavrushin, V.V., Report on the Results of Prospecting and Appraisal Works for Fluorite in the Operating Kalangui Mine Area (Sites Dzhidokanskii and Duturul’skii) for 1966–72 and 1976–82. Inv. no. 15288. Chita: PGO Chitageologiya, 1983. 209 s.

  5. Beskin, S.M., Marin, Yu.B., Matias, V.V., and Gavrilova, S.P., What is a “rare-metal granite”: history of problem, terminology, types, and genesis, Zap. Ross. Mineral. O-va, 1999, vol. 128, no. 6, p. 28.

    Google Scholar 

  6. Chevychelov, V.Yu., Partitioning of volatile components (Cl, F, and CO2) in water-saturated fluid–magma systems of various composition, Petrology, 2019, vol. 27, no. 6, pp. 585–606.

    Article  Google Scholar 

  7. Fel’dman, L.G., Surkov, B.K., and Stolyarova, T.I., Flyuocerite from Rare-Metal Granites of Northern Tien Shan and Some Data on Genetic Mineralogy of REE Fluorides, Tr. Mineralogicheskogo muzeya. Novye dannye o mineralakh SSSR (proc. Mineral Museum. New Data on Minerals of the USSR), Moscow: Nauka, 1973, vol. 22.

  8. Ferry, J.M. and Watson, E.B., New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. Mineral. Petrol., 2007, vol. 154, pp. 429–437.

    Article  Google Scholar 

  9. Goldstein, S.L. and Jacobsen, S.B., Nd and sr isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–65.

    Article  Google Scholar 

  10. Gordienko, I.V., Metelkin, D.V., and Vetluzhskikh, L.I., The structure of the Mongol–Okhotsk orogenic belt and the problem of recognition of the Amur microcontinent, Russ. Geol. Geophys. 2019, vol. 60, no. 3, pp. 267–286.

    Google Scholar 

  11. Gratz, R. and Heinrich, W., Monazite–xenotime thermometry. III: experimental calibration of the partitioning of Gd between monazite and xenotime, Eur. J. Mineral., 1998, vol. 10, no. 3, pp. 579–588.

    Article  Google Scholar 

  12. Grebennikov, A.M., Tungsten, tantalum, and niobium-fluorine-bearing types of granitoids and associated productive formations: evidence from Eastern Transbaikalia, Mineralogiya i geokhimiya vol’framovykh mestorozhdenii (Mineralogy and Geochemistry of Tungsten Deposits), Leningrad: Izd-vo Leningradskogo un-ta, 1971, pp. 51–59.

  13. Grebennikov, A.V., A-type granites and related rocks: petrogenesis and classification, Russ. Geol. Geophys., 2014, vol. 55, issue 11, pp. 1353–1366.

    Article  Google Scholar 

  14. Harris, N.B.W., Pearce, J.A., and Tindle, A.G., Geochemical characteristics of collision-zone magmatism, Collisions Tectonics, Coward, M.P. and Ries, A.C., Eds. Geol. Soc. Spec. Publ., 1986, vol. 19, pp. 67–81.

    Google Scholar 

  15. Ivanova, A.A., Badanina, E.V., Syritso, L.F., and Borisova, E.B., REE-Zr-U-Th-Nb-F mineralization in peraluminous Li-F amazonite granites of the Turga massif: a new geochemical type of rare-metal granites for Eastern Transbaikalia, In: Votyakov S., Kiseleva D., Grokhovsky V., Shchapova Y. (eds) Minerals: Structure, Properties, Methods of Investigation. Springer Proceedings in Earth and Environmental Sciences, Springer, Cham, 2020.

  16. Ivanova, A.A., Syritso, L.F., Badanina, E.V., and Sagitova, A.M., Zircon from the Turga multiphase massif with amazonite granites (Eastern Transbaikalia) and its petrogenetic significance. Geol. Ore Dep., 2019, vol. 61, no. 8, pp. 707–721.

  17. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd isotopic evolution of chondrites and achondrites, ii, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  18. Kostitsyn, Yu.A., Zaraisky, G.P., Aksyuk, A.M., and Chevychelov, V.Yu., Rb–Sr evidence for the genetic links between biotite and li–f granites: an example of the Spokoinoe, Orlovka, and Etyka deposits, Eastern Transbaikalia, Geochem. Int. 2004, vol. 42, no. 9, pp. 822–829.

    Google Scholar 

  19. Kovalenko, V.I., Yarmolyuk, V.V., Vladykin, N.V., et al., Epochs of formation, geodynamic setting, and sources of rare-metal magmatism in Central Asia, Petrology, 2002, vol. 10, no. 3, pp. 199–221.

    Google Scholar 

  20. Kozlov, V.D., Svadkovskaya, L.N., and Karpov, I.K., Slyudy magmatitov Zabaikal’ya (voprosy genezisa i rudonosnosti granitoidov) (Micas of Migmatites of Transbaikalia: Problems of Genesis and Ore Potential of the Granitoids), Novosibirsk: Nauka, 1978.

  21. Lugovskoi, G.P., Matias, V.V., Timofeev, I.N., and Fel’dman, L.G., Structure and genesis of rare-metal granite massifs, Redkometal’nye granity i problemy magmaticheskoi differentsiatsii (Rare-Metal Granites and Problems of Magmatic Differentiation), Moscow: Nedra, 1972, pp. 131–161.

    Google Scholar 

  22. Machevariani, M.M., Typomorphic Features of Zircon from Granitoids of the Verkhneurmii Massif, Amur Region, Candidate’s (Geol-Min.) Dissertation, St. Petersrburg: Natsional’nyi mineral’no-syr’evoi universitet “Gornyi”, 2015.

  23. Maeda, J., Opening of the Kuril basin deduced from the magmatic history of central Hokkaido, North Japan, Tectonophysics, 1990, vol. 174, pp. 235–255.

    Google Scholar 

  24. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  25. McDonough, W.F. and Sun, S.S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  26. Ob"yasnitel’naya zapiska k gosudarstvennoi geologicheskoi karte, list M-50-IX (Kalangui) (Explanatory Note to the State Geological Map, Sheet M-50-IX (Kalangui)), Moscow:.

  27. Pearce, J.A., Harris, N.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  28. Pupin, J.P., Zircon and granite petrology, Contrib. Mineral. Petrol., 1980, vol. 73, pp. 207–220.

    Article  Google Scholar 

  29. Pushkarev, Yu.D., Syritso, L.F., and Belyatskii, B.V., Initial Sr, Pb, Nd, isotope compositions in Li–F granites of Transbaikalia as evidence for the presence of mantle component, XV simpozium po geokhimii izotopov. Moskva. Tez. Dokl. (15th Symposium on Isotope Geochemistry. Moscow, 1997, Moscow: 1997, pp. 232–233.

  30. Richard, P., Shimizu, N., and Allegre, C.J., 143Nd/146Nd, a natural tracer: an application to oceanic basalts, Earth Planet. Sci. Lett., 1976, vol. 31, pp. 269–278.

    Article  Google Scholar 

  31. Salehi, Z., Masoudi, F., Razavi, M., and Faramarzi, N.S., Estimating of crystallisation temperature of Mard–Abad (Karaj) granitic intrusion using mineralogy, geochemistry and morphology of zircon crystals, J. Sci. Islamic Republ. Iran, 2014, vol. 25, no. 2, pp. 143–155.

    Google Scholar 

  32. Savel’eva V.B., Bazarova E.P., Khromova E.A., Kanakin S.V. Ftoridy i ftorkarbonaty v porodakh Katuginskogo kompleksa (Vostochnaya Sibir’) kak indikatory geokhimicheskikh uslovii mineraloobrazovaniya, Zap. Ross. Mineral. O-va, 2016, vol. 145, no. 2, pp. 1–19.

    Google Scholar 

  33. Shapovalov, Yu.B., Chevychelov, V.Yu., Korzhinskaya, V.S., et al., Physical and chemical parameters of processes producing rare-metal deposits in granitoid systems with fluorine: experimental data, Petrology, 2019, vol. 27, no. 6, pp. 567–584.

    Article  Google Scholar 

  34. Syritso, L.F., Mezozoiskie granitoidy Vostochnogo Zabaikal’ya i problemy redkometal’nogo rudoobrazovaniya (Mesozoic Granitoids of Eastern Transbaikalia and Problems of Rare-Metal Ore Formation), St. Petersburg: Izd-vo St. Petersb. Univ., 2002.

  35. Syritso, L.F., Shergina, Yu.P., Badanina, E.V., et al., Mesozoic intrusive series of Transbaikalia and Problems of their Petrogenesis, Vestn. St. Petersb. Univ., 1999, Ser. 7, vol. 4, no. 28, pp. 82–88.

  36. Syritso, L.F., Spiridonov, A.A., Toporskii, V.N., Rb and Sr concentrations as geochemical indicators of the evolution of off-geosynclinal magmatism of Eastern Transbaikalian, Geokhimiya, 1989, no. 9, pp. 1258–1269.

  37. Tauson, L.V., Geokhimicheskie tipy i potentsial’naya rudonosnost' granitoidov (Geochemical Types and Ore Potential of the Granitoids), Moscow: Nauka, 1977.

  38. Tauson, L.V., Antipin, V.S., Zakharov, M.N., et al., Geokhimiya mezozoiskikh latitov Zabaikal’ya (Geochemistry of Mesozoic Latites of Transbaikalia), Novosibirsk: Nauka, 1984.

  39. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Evolution and Composition, London: Blackwell, 1985.

    Google Scholar 

  40. Troshin, Yu.P., Geokhimiya letuchikh komponentov v magmaticheskikh porodakh, oreolakh i rudakh Vostochnogo Zabaikal’ya (Geochemistry of Volatiles in Magmatic Rocks, Aureoles, and Ores of Eastern Transbaikalia), Novosibirsk: Nauka, 1978.

  41. Troshin, Yu.P., Grebenshchikova, V.I., and Boiko, S.M., Geokhimiya i petrologiya redkometal’nykh plyumazitovykh granitov (Geochemistry and Petrology of Rare-Metal Plumasite Granites), Novosibirsk: Nauka, 1983.

  42. Turkina. O.M., Lektsii po geokhimii magmaticheskogo i metamorficheskogo protsessov (Lecture on Geochemistry of Magmatic and Metamorphic Processes), Novosibirsk: RITs NGU, 2014.

  43. Vladykin, N.V., Alymova, N.V., and Perfil’ev, V.V., Geochemical features of rare-metal granites of the Zashikhinsky Massif, East Sayan, Petrology, 2016, vol. 24, no. 5, pp. 512–526.

    Article  Google Scholar 

  44. Watson, E.B. and Harrison, T.M., Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types, Earth Planet. Sci. Lett. 1983, vol. 64, pp. 295–304.

    Article  Google Scholar 

  45. Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  46. Yarmolyuk, V.V. and Kovalenko, V.I., Deep geodynamics and mantle plumes: their role in the formation of the Central Asian Fold Belt, Petrology, 2003, vol. 11, no. 6, pp. 504–531.

    Google Scholar 

  47. Zaraisky, G.P., Aksyuk, A.M., Devyatova, V.N., et al., The Zr/Hf ratio as a fractionation indicator of rare-metal granites, Petrology, 2009, vol. 17, no. 1, pp. 25–45.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.S. Abushkevich for providing isotope geochronologic data on the Turga massif. V.M. Savatenkov is thanked for help with an isotope geochronologic study of rocks of the Shakhtama complex. We highly appreciate A.A. Spiridonov’s work, who has collected rocks and conducted a geochemical sampling of the Turga massif, thus providing a basis for our study. The authors also thank V.V. Yarmolyuk and V.S. Antipin for help in improving the manuscript.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-05-00957, and the DAAD German Academic Exchange Service. The study was carried out using equipment of the Research Park at the St. Petersburg State University. This paper publishes some materials acquired under project 13-05-01057 of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Ivanova or E. V. Badanina.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syritso, L.F., Ivanova, A.A., Badanina, E.V. et al. Amazonite Li–F Granites with REE–Nb–Zr–Th–U Specialization: Geochemistry, Mineralogy, and Isotope Geochronology of the Turga Massif, Eastern Transbaikalia. Petrology 29, 54–76 (2021). https://doi.org/10.1134/S0869591121010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121010069

Keywords:

Navigation