Skip to main content
Log in

Synthesis, Attractiveness and Effectiveness of Chitosan-Tapioca Encapsulates in Atta Sexdens (Hymenoptera: Formicidae)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Leaf-cutting ants (genera Atta and Acromyrmex) are defoliation pests of great agronomic importance. Currently, the most effective control method is chemical using granulated baits containing sulfluramid as a standard active ingredient. In this work, a new protocol was proposed for the synthesis of the encapsulates with chitosan, tapioca, citrus pulp and sulfluramid. A sulfluramid is a pesticide which is used extensively in Brazil for management of leaf cutting ants. The main focus of this work is to use a polymeric combination aligned with the active ingredient that allows the formation of an encapsulated which the ants can transport and incorporate to their nests, being an effective methodology for the death of colonies. The encapsulated makes the active ingredient less available to the environment, but maintains the mortality level similar to the used granulated baits. For this reason, it was proposed to develop a chitosan and tapioca encapsulated for the control of leaf-cutting ants.The presence of sulfluramid in the encapsulated was confirmed by Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The behavioral acts related to the transport and the incorporation of leaf disks and encapsulates were observed utilizing A. sexdens colonies. The encapsulates containing sulfluramid have presented a similar intoxication of A. sexdens workers causing mortality in the same proportion as the commercial baits. The protocol for the synthesis of the encapsulates can be utilized with other substances, as entomopathogenic and parasite microorganisms.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Britto JS, Forti LC, de Oliveira MA, Zanetti R, Wilcken CF, Zanuncio JC, Loeck AE, Caldato N, Nagamoto NS, Lemes PG (2016) Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants atta and acromyrmex. Int J Res Environ Stud 3:11–92

    Google Scholar 

  2. Boaretto M, Forti L (1997) Perspectives in the control of leaf-cutting ants. SérieTécnica IPEF 11(30):31–46

    Google Scholar 

  3. Mueller UG, Ishak HD, Bruschi SM, Smith CC, Herman JJ, Solomon SE, Mikheyev AS, Rabeling C, Scott JJ, Cooper M (2017) Biogeography of mutualistic fungi cultivated by leafcutter ants. MolEcol 26(24):6921–6937

    CAS  Google Scholar 

  4. De Oliveira JL, EnVR C, Pereira AE, Nunes LE, Da Silva CC, Pasquoto T, Lima R, Smaniotto G, Polanczyk RA, Fraceto LF (2018) Geraniol encapsulated in chitosan/gum arabic nanoparticles: a promising system for pest management in sustainable agriculture. J Agric Food Chem 66(21):5325–5334

    Article  PubMed  CAS  Google Scholar 

  5. Vega-Vásquez P, Mosier NS, Irudayaraj J (2020) Nanoscale drug delivery systems: from medicine to agriculture. FrontBioengBiotechnol. https://doi.org/10.3389/fbioe.2020.00079

    Article  Google Scholar 

  6. Silva GdOd, Takizawa FF, Pedroso RA, Franco CML, Leonel M, Sarmento SBS, Demiate IM (2006) Physicochemical characteristics of modified food starches commercialized in Brazil. Food SciTechnol 26:188–197

    Google Scholar 

  7. Liu CP, Liu SD (2009) Formulation and characterization of the microencapsulated entomopathogenic fungus metarhiziumanisopliae MA126. J Microencapsul 26(5):377–384

    Article  CAS  PubMed  Google Scholar 

  8. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. ProgPolymSci 36(8):981–1014

    CAS  Google Scholar 

  9. Silva AM (2016) Biodegradable starch films containing encapsulated active compounds and nanoparticles: a review

  10. Kumar MR, Muzzarelli R, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  PubMed  Google Scholar 

  11. Orzari LO, Santos FA, Janegitz BC (2018) Manioc starch thin film as support of reduced graphene oxide: a novel architecture for electrochemical sensors. J ElectroanalChem 823:350–358

    Article  CAS  Google Scholar 

  12. Marichelvam M, Jawaid M, Asim M (2019) Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7(4):32

    Article  CAS  Google Scholar 

  13. Denardin CC, Silva LPd (2009) Starch granules structure and its regards with physicochemical properties. Ciênc Rural 39(3):945–954

    Article  CAS  Google Scholar 

  14. Thakur R, Pristijono P, Scarlett CJ, Bowyer M, Singh S, Vuong QV (2019) Starch-based films: major factors affecting their properties. Int J BiolMacromol 132:1079–1089

    Article  CAS  Google Scholar 

  15. Breuninger WF, Piyachomkwan K, Sriroth K (2009) Chapter 12 tapioca/cassava starch: production and use. In: BeMiller J, Whistler R (eds) Starch, 3rd edn. Academic Press, San Diego, pp 541–568

    Chapter  Google Scholar 

  16. Mauruto de Oliveira GC, de Palma PE, Kunita MH, Antigo Medeiros R, de Matos R, Francisco KR, Janegitz BC (2017) Tapioca biofilm containing nitrogen-doped titanium dioxide nanoparticles for electrochemical detection of 17-β estradiol. Electroanalysis 29(11):2638–2645

    Article  CAS  Google Scholar 

  17. Mali S, Grossmann MVE, García MA, Martino MN, Zaritzky NE (2006) Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J Food Eng 75(4):453–460

    Article  CAS  Google Scholar 

  18. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J BiolMacromol 105:1358–1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087

    Article  CAS  Google Scholar 

  19. Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J ApplPolymSci 79(7):1324–1335. https://doi.org/10.1002/1097-4628(20010214)79:7%3c1324::AID-APP210%3e3.0.CO;2-L

    Article  Google Scholar 

  20. Kaiser M, Pereira S, Pohl L, Ketelhut S, Kemper B, Gorzelanny C, Galla H-J, Moerschbacher BM, Goycoolea FM (2015) Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells. Sci Rep 5(1):1–14

    Article  CAS  Google Scholar 

  21. Panos I, Acosta N, Heras A (2008) New drug delivery systems based on chitosan. Curr Drug DiscovTechnol 5(4):333–341

    Article  CAS  Google Scholar 

  22. Sonia T, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Chitosan for biomaterials I. Springer, Berlin, pp 23–53

    Chapter  Google Scholar 

  23. Shapi’i R, Othman SH (2016) Effect of concentration of chitosan on the mechanical, morphological and optical properties of tapioca starch film. Int Food Res J 23:S187

    CAS  Google Scholar 

  24. Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L, Del Nobile MA (2008) Influence of glycerol and chitosan on tapioca starch-based edible film properties. J Food Eng 88(2):159–168. https://doi.org/10.1016/j.jfoodeng.2008.02.002

    Article  CAS  Google Scholar 

  25. Salaberria AM, Diaz RH, Labidi J, Fernandes SC (2015) Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids 46:93–102

    Article  CAS  Google Scholar 

  26. Lopes J (2004) Behavioral differentiation of species of Acromyrmex spp. (Mayr, 1865) (Hymenoptera, Formicidae) cutters of monocots and dicots. Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brasil, p 93

  27. Wilson EO (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: formicidae: atta). BehavEcolSociobiol 7(2):157–165

    Google Scholar 

  28. da Silva CR, Silva LC, Forti LC, de Matos CAO, Travaglini RV (2015) Do attasexdensrubropilosa workers prepare leaves and bait pellets in similar ways to their symbiotic fungus? Sociobiology 62(4):484–493

    Google Scholar 

  29. Nagamoto NS, Barbieri RF, Forti LC, Cardoso SRdS, Moreira SM, Lopes JFS (2011) Attractiveness of copperleaf-based bait to leaf-cutting ants. Ciênc Rural 41(6):931–934

    Article  Google Scholar 

  30. Nagamoto NS, Forti LC, Andrade APP, Boaretto MAC, Wilcken CF (2004) Method for the evaluation of insecticidal activity over time in Atta sexdensrubropilosa workers (Hymenoptera: formicidae). Sociobiology 44(2):413–432

    Google Scholar 

  31. Bass M, Cherrett J (1995) Fungal hyphae as a source of nutrients for the leaf-cutting ant attasexdens. PhysiolEntomol 20(1):1–6

    Google Scholar 

  32. Ayres M, Ayres Jr M, Ayres D, Santos A (2007) BioEstat—Aplicaçoes estatısticas nas áreas das ciências biológicas e médicas. Belém: Sociedade Civil Mamirauá: MCT-CNPq

  33. Hammer Ø, Harper DA (2008) Paleontological data analysis. Wiley, Hoboken

    Google Scholar 

  34. Bandeira PN, Pessoa ODL, Trevisan MTS, Lemos TLG (2002) Secondary metabolites of protiumheptaphyllum march. Quím Nov 25(6B):1078–1080

    Article  Google Scholar 

  35. Zimmermann MV, Turella TC, Zattera AJ, Santana R (2014) Influence of the chemical treatment of banana fiber on poly(ethylene-co-vinyl acetate) composites with and without a blowing agent. Polímeros 24(1):58–64

    Article  CAS  Google Scholar 

  36. Zhang K, Huang J, Yu G, Zhang Q, Deng S, Wang B (2013) Destruction of perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. Environ SciTechnol 47(12):6471–6477

    Article  CAS  Google Scholar 

  37. Deeyai P, Suphantharika M, Wongsagonsup R, Dangtip S (2013) Characterization of modified tapioca starch in atmospheric argon plasma under diverse humidity by FTIR spectroscopy. Chin PhysLett 30(1):018103

    Google Scholar 

  38. Vaz R, Vieira KO, Machado CE, Ferrari JL, Schiavon MA (2015) Preparation of carbon dots and their optical characterization: an experiment of nanoscience for undergraduate course. Quím Nov 38(10):1366–1373

    CAS  Google Scholar 

  39. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. ThermochimActa 396(1–2):153–166

    Article  CAS  Google Scholar 

  40. Silva GdOd, Takizawa FF, Pedroso RA, Franco CML, Leonel M, Sarmento SBS, Demiate IM (2006) Physicochemical characteristics of modified food starches commercialized in Brazil. Food SciTechnol 26(1):188–197

    Google Scholar 

  41. Guo W, Huo S, Feng J, Lu X (2017) Adsorption of perfluorooctanesulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures. J Taiwan InstChemEng 78:265–271

    Article  CAS  Google Scholar 

  42. Garau MC, Simal S, Rossello C, Femenia A (2007) Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem 104(3):1014–1024

    Article  CAS  Google Scholar 

  43. Fowler HG, Robinson S (1979) Foraging by attasexdens (Formicidae: attini): seasonal patterns, caste and efficiency. EcolEntomol 4(3):239–247

    Google Scholar 

  44. Saverschek N, Herz H, Wagner M, Roces F (2010) Avoiding plants unsuitable for the symbiotic fungus: learning and long-term memory in leaf-cutting ants. AnimBehav 79(3):689–698

    Google Scholar 

  45. Arenas A, Roces F (2017) Avoidance of plants unsuitable for the symbiotic fungus in leaf-cutting ants: learning can take place entirely at the colony dump. PLoS ONE 12(3):e0171388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Knapp J, Howse P, Kermarrec A (1990) Factors controlling foraging patterns in the leaf-cutting ant Acromyrmexoctospinosus. In: Vander Meer RK (ed) Applied mirmecology a world perspective. Westview Press, Boulder

    Google Scholar 

  47. HoČlldobler B, Wilson E (1990) The ants. Cambridge, Mass, Belknap

    Book  Google Scholar 

  48. Okuno M, Tsuji K, Sato H, Fujisaki K (2012) Plasticity of grooming behavior against entomopathogenic fungus Metarhiziumanisopliae in the ant Lasiusjaponicus. J Ethol 30(1):23–27

    Article  Google Scholar 

  49. Quinlan R, Cherrett J (1979) The role of fungus in the diet of the leaf-cutting ant Atta cephalotes (L.). EcolEntomol 4(2):151–160

    Google Scholar 

  50. Andrade APPd, Forti LC, Moreira AA, Boaretto MAC, Ramos VM, Matos CAOd (2002) Behavior of attasexdensrubropilosa (Hymenoptera: formicidae) workers during the preparation of the leaf substrate for symbiont fungus culture. Sociobiology 40(2):293–306

    Google Scholar 

  51. Forti LC, Pretto DR, Nagamoto NS, Padovani CR, Camargo RS, Andrade APP (2007) Dispersal of the delayed action insecticide sulfluramid in colonies of the leaf-cutting ant attasexdensrubropilosa (Hymenoptera: formicidae). Sociobiology 50(3):1149–1164

    Google Scholar 

  52. Xin S, Xiao L, Dong X, Li X, Wang Y, Hu X, Sameen DE, Qin W, Zhu B (2020) Preparation of chitosan/curcumin nanoparticles based zein and potato starch composite films for schizothoraxprenati fillet preservation. Int J BiolMacromol 164:211–221. https://doi.org/10.1016/j.ijbiomac.2020.07.082

    Article  CAS  Google Scholar 

  53. Kamaldeen O, Ariahu C, Yusufu M (2020) Application of soy protein isolate and cassava starch based film solutions as matrix for ionic encapsulation of carrot powders. J Food SciTechnol 57(11):4171–4181

    CAS  Google Scholar 

  54. Zhang J, Tang Q, Xu X, Li N (2013) Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm 448(1):168–174. https://doi.org/10.1016/j.ijpharm.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  55. Angelo LM, França D, Faez R (2021) Biodegradation and viability of chitosan-based microencapsulated fertilizers. CarbohydrPolym 257:117635. https://doi.org/10.1016/j.carbpol.2021.117635

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (303338/2019-9), FAPESP (2017/21097-3, 2019/23177-0), and CAPES (001 and 88881.504862/2020-01) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Campos Janegitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 8996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustani, F.M., Silva, T.A., Camargo, J.R. et al. Synthesis, Attractiveness and Effectiveness of Chitosan-Tapioca Encapsulates in Atta Sexdens (Hymenoptera: Formicidae). J Polym Environ 29, 2869–2880 (2021). https://doi.org/10.1007/s10924-021-02084-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02084-8

Keywords

Navigation