Skip to main content

Advertisement

Log in

Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Abstract

Climate change is a matter of worldwide concern with severe predicted impacts on biodiversity. Here, we analysed the potential impacts of current and future climates on aquatic true bugs (Heteroptera) in relation to their distribution patterns and ecological preferences (based on a database generated from existing literature references and field collections). We considered the traits as ‘species thermal range’ and ‘emergence period’ to evaluate the future climate change impacts on the distributions of aquatic true bugs in the riverine regions of a tropical biodiversity hotspot, the Western Ghats of India. We used Species Distribution Models (SDMs) to evaluate the potential impacts of climate change on the distributions of aquatic true bugs. We modelled the distributions of twenty-six species of aquatic true bugs using different modelling tools through a carefully examined set of occurrence records to generate potential present distributions and to project these distributions into future scenarios of climate change. We observed increasing/decreasing range sizes of the species in the current and future scenarios. We found losses and increases of species' ranges in some regions, but not much variation in species richness. Similarly, no significant effect was observed in the distribution ranges for species with different duration of emergence period and thermal range in current and future climatic scenarios. Losses and gains in species richness would be concentrated in the mountainous area of the Western Ghats, whereas loss of species and the bigger difference between current and future richness will occur in the adjacent lowlands and towards central regions, including the network of protected areas of the Western Ghats. These areas are critical to buffer regional species loss in the future.

Implications for insect conservation

Given the importance of aquatic true bugs as bioindicators and biological control agents, monitoring their range shifts should be routinely addressed in the conservation contexts of the Western Ghats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo P, Jiménez-Valverde A, Lobo JM, Real R (2017) Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change. Clim Change 145:131–143. https://doi.org/10.1007/s10584-017-2082-1

    Article  Google Scholar 

  • Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winemiller KO, Ripple WJ (2020) Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio. https://doi.org/10.1007/s13280-020-01318-8

    Article  PubMed  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, Kappa and the True Skill Statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Almeida MC, Côrtes LG, De Marco Jr P (2010) New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv Divers 3:252–256. https://doi.org/10.1111/j.1752-4598.2010.00096.x

    Article  Google Scholar 

  • Anbalagan S, Dinakaran S, Krishnan M (2012) Spatio-temporal dynamics of leaf litter associated macroinvertebrates in six river basins of Peninsular India. Ecologia 2:1–11. https://doi.org/10.3923/ecologia.2012.1.11

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393. https://doi.org/10.1111/j.1365-2699.2010.02290.x

    Article  Google Scholar 

  • Andrade AFA, Velazco SJE, De Marco Jr P (2020) ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ Model Softw 125:104615. https://doi.org/10.1016/j.envsoft.2019.104615

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberpn J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 22211:1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  • Box GEP (1979) Robustness in the strategy of scientific model building. In: Launer RL, Wilkinson GN (eds) Robustness in statistics. Academic Press, New York, pp 201–236

    Chapter  Google Scholar 

  • Brown SC, Wigle TML, Otto-Bliesne BL et al (2020) Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat Clim Chang 10:244–248. https://doi.org/10.1038/s41558-019-0682-7

    Article  Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T et al (2020) Scientists’ warning to humanity on insect extinctions. Biol Conserv 242:108426

    Article  Google Scholar 

  • Carvalho DL, Sousa-Neves T, Cerqueira PV, Gonsioroski G, Silva SM, Silva DP et al (2017) Delimiting priority areas for the conservation of endemic and threatened Neotropical birds using a niche-based gap analysis. PLoS ONE 12:e0171838. https://doi.org/10.1371/journal.pone.0171838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahanukar N, Rupesh R, Bhat A (2004) Distibution, endemism and threat status of freshwater fishes in the Western Ghats of India. J Biogeography 31:123–136. https://doi.org/10.1046/j.0305-0270.2003.01016.x

    Article  Google Scholar 

  • De Siqueira MF, Durigan G, De Marco JP, Peterson AT (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J Nat Conserv 17:25–32. https://doi.org/10.1016/j.jnc.2008.11.001

    Article  Google Scholar 

  • Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P (2013) Modelling distribution in European stream macroinvertebrates under future climates. Glob Chang Biol 19:752–762. https://doi.org/10.1111/gcb.12107

    Article  PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop) 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dudgeon D et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Faleiro FV, Silva DP, Carvalho RA, Särkinen T, De Marco JP (2015) Ring out the bells, we are being invaded! Niche conservatism in exotic populations of the Yellow Bells, Tecoma stans (Bignoniaceae). Nat Conserv 13:24–29. https://doi.org/10.1016/j.ncon.2015.04.004

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conser 24:38–49

    Article  Google Scholar 

  • Giovanelli JGR et al (2010) Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecol Model 221:215–224

    Article  Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop) 29:773–785

    Article  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54

    Article  Google Scholar 

  • Hering D et al (2009) Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71:3–14

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hortal J, de Bello F, Diniz-Filho JAF et al (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1535 pp

  • Jiménez-Valverde A, Lobo JM (2011) Tolerance limits, animal. In: Simberloff D Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, CA, pp 661–663

  • Jourdan J et al (2018) Effects of changing climate on European stream invertebrate communities: a long-term data analysis. Sci Total Environ 621:588–599. https://doi.org/10.1016/j.scitotenv.2017.11.242

    Article  CAS  PubMed  Google Scholar 

  • Kotiaho JS, Kaitala V, Komonen A, Paivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102(6):1963–1967

    Article  CAS  Google Scholar 

  • Leroy B et al (2018) Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45:1994–2002

    Article  Google Scholar 

  • Lobo JM, Tognelli MF (2011) Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J Nat Conserv 19:1–7

    Article  Google Scholar 

  • Mammola S, Riccardi N, Prié V, Correia R, Cardoso P, Lopes-Lima M, Sousa R (2020) Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc R Soc B 287:20202166. https://doi.org/10.1098/rspb.2020.2166

    Article  PubMed  Google Scholar 

  • Martins AC, Silva DP, De Marco JP, Melo GAR (2015) Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. J Insect Conserv 19:33–43. https://doi.org/10.1007/s10841-014-9740-7

    Article  Google Scholar 

  • MoEFCC (2010) Climate change and India: A 4X4 assessment - a sectoral and regional analysis for 2030s. INCCA report #2. INCCA: Indian Network for Climate Change Assessment

  • Molur S, Smith KG, Daniel BA, Darwall WRT (Compilers) (2011) The status and distribution of freshwater biodiversity in the Western Ghats, India. Cambridge, UK and Gland, Switzerland: IUCN, and Coimbatore, India: Zoo Outreach Organization

  • Montalva J, Sepulveda V, Vivallo F, Silva DP (2017) New records of an invasive bumble bee in northern Chile: expansion of its range or new introduction events? J Insect Conserv 21:657–666. https://doi.org/10.1007/s10841-017-0008-x

    Article  Google Scholar 

  • Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22. https://doi.org/10.1177/0309133309355630

    Article  Google Scholar 

  • Nóbrega CC, De Marco JP (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peres EA, Sobral-Souza T, Perez MF, Bonatelli IAS, Silva DP, Silva MJ, Solferini VN (2015) Pleistocene niche stability and lineage diversification in the subtropical spider Araneus omnicolor (Araneidae). PLoS ONE 10:e0121543. https://doi.org/10.1371/journal.pone.0121543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Pyke GH, Ehrlich PR (2010) Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol Rev 85:247–266

    Article  Google Scholar 

  • Raes N (2012) Partial versus full species distribution models. Nat Conserv 10:127–138

    Article  Google Scholar 

  • Ramachandra TV, Setturu B (2019) Carbon sequestration potential of the forest ecosystems in the Western Ghats, a global biodiversity hotspot. Nat Resour Res. https://doi.org/10.1007/s11053-019-09588-0

    Article  Google Scholar 

  • Reid AJ et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94:849–873. https://doi.org/10.1111/brv.12480

    Article  PubMed  Google Scholar 

  • Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109(Suppl 1):141–161. https://doi.org/10.1289/ehp.01109s1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK, Landerer FW, Lo M-H (2018) Emerging trends in global freshwater availability. Nature. https://doi.org/10.1038/s41586-018-0123-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls RJ, Heino J, Ryder DS, Chessman BC, Growns IO, Thompson RM, Gido KB (2018) Scaling biodiversity responses to hydrological regimes. Biol Rev 93:971–995. https://doi.org/10.1111/brv.12381

    Article  PubMed  Google Scholar 

  • Rosso A, Aragón P, Acevedo F, Doadrio I, García-Barros E, Lobo JM, Munguira ML, Monserrat VJ, Palomo J, Pleguezuelos JM, Romo H, Triviño V, Sánchez-Fernández D (2018) Effectiveness of the Natura 2000 network in protecting Iberian endemic fauna. Anim Conserv 21:262–271. https://doi.org/10.1111/acv.12387

    Article  Google Scholar 

  • Sánchez-Fernández D, Abellán P, Picazo F, Millán A, Ribera I, Lobo JM (2013) Do protected areas represent species’ optimal climatic conditions? A test using Iberian water beetles. Divers Distrib 19(11):1407–1417. https://doi.org/10.1111/ddi.12104

    Article  Google Scholar 

  • Saulich AH, Musolin DL (2007) Seasonal development of aquatic and semi-aquatic true bugs (Heteroptera). St Petersburg University, St Petersburg

    Google Scholar 

  • Schaefer CW, Panizzi AR (2000) Heteroptera of econornic importance. CRC Press, Boca Raton

    Book  Google Scholar 

  • Shah DN, Domisch S, Pauls SU, Haase P, Jähnig SC (2014) Current and future latitudinal gradients in stream macroinvertebrate richness across North America. Freshw Sci 33:1136–1147. https://doi.org/10.1086/678492

    Article  Google Scholar 

  • Shameer PS, Rameshkumar KB, Mohanan N (2016) Diversity of Garcinia species in the Western Ghats. In: Rameshkumar KB (ed) Diversity of Garcinia species in the Western Ghats: phytochemical perspective. Jawaharlal Nehru Tropical Botanic Garden and Research Institute Palode, Akshara Offset Press, Thiruvananthapuram, India, pp 01–18

    Google Scholar 

  • Silva DP, Gonzalez VH, Melo GAR, Lucia M, Alvarez LJ, De Marco JP (2014) Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgushuberi in South America. Ecol Modell 273:200–209. https://doi.org/10.1016/j.ecolmodel.2013.11.016

    Article  Google Scholar 

  • Silva DP, Vilela B, Buzatto BA, Moczek AP, Hortal J (2016) Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biol Invasions 18:3137–3148. https://doi.org/10.1007/s10530-016-1204-4

    Article  Google Scholar 

  • Silva DP, Dias AC, Lecci LS, Simião-Ferreira J (2019) Potential effects of future climate changes on Brazilian cool-adapted Stoneflies (Insecta: Plecoptera). Neotrop Entomol 48:57–70. https://doi.org/10.1007/s13744-018-0621-8

    Article  CAS  PubMed  Google Scholar 

  • Singh MP, Singh BS, Dey S (2002) Plant diversity and taxonomy. Daya Publishing House, New Delhi, pp 108–121

    Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inf 2:1–10

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x

    Article  PubMed  Google Scholar 

  • Sundar S, Heino J, Roque FO et al (2020) Conservation of freshwater macroinvertebrate biodiversity in tropical regions. AquaticConserv Mar Freshw Ecosyst. https://doi.org/10.1002/aqc.3326

    Article  Google Scholar 

  • Tierno de Figueroa JM, López-Rodríguez MJ, Lorez A, Graf W, Schimidt-Kloiber A, Hering D, Lorenz A, Graf W, Schmidt-Kloiber A, Hering D (2010) Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodivers Conserv 19:1269–1277. https://doi.org/10.1007/s10531-009-9753-9

    Article  Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594

    Article  Google Scholar 

  • Villalpando SN, William RS, Norby RJ (2009) Elevated air temperature alters an old-field insect community in a multifactor climate change experiment. Glob Change Biol 15:930–942

    Article  Google Scholar 

Download references

Acknowledgments

The author (S. S.) thanks Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India for financial support under Fast Track Young Scientist Scheme (File. No. SB/FT/LS-266/2012). DPS and FOR are supported by a productivity grant by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. Number 304494/2019-4 and 302755/2018-7, respectively). We thank Institutional Program of Internationalization sponsored by Coordination for the Improvement of Higher Education Personnel (Capes-Print Number 41/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sundar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest o declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: literature information sources

Appendix: literature information sources

  1. 1.

    Basu S, Polhemus DA, Subramanian KA, Saha GK, Venkatesan T (2016) Metrocoris Mayr (Insecta: Hemiptera: Gerridae) of India with descriptions of five new species. Zootaxa, 4178(2): 257–277.

  2. 2.

    Chandra K Jehamalar EE (2012a) Lathriobates manohardasi sp. nov. (Hemiptera: Gerromorpha: Gerridae) from Tamilnadu, India, with a key to the species. Zootaxa, 3186: 64–68.

  3. 3.

    Chandra K Jehamalar EE (2012b) Morphological differences in three species of the genus Diplonychus (Hemiptera: Belostomatidae) known from India. Rec. zool. Surv. India, 112(2): 91–99.

  4. 4.

    Jehamalar EE, Chandra K Srinivasan G (2018) Water striders, the genus Cylindrostethus Mayr (Insecta: Heteroptera: Gerridae) from India with a new record. Journal of Threatened Taxa 10(5):11665–11671. http://doi.org/10.11609/jott.3750.10.5.11665-11671

  5. 5.

    Sites RW, Arunachalam M, Sundar S (2011) A new species of Aphelocheirus (Hemiptera: Heteroptera: Aphelocheiridae) from southern India. Zootaxa, 2916, 35–40.

  6. 6.

    Sivaramakrishnan KG, Venkataraman K, Moorthy RK, Subramanian KA, Utkarsh G (2000) Aquatic insect diversity and ubiquity of the streams of the Western Ghats, India. Journal of Indian Institute of Science 80:537–552.

  7. 7.

    Subramanian KA, Sivaramakrishnan KG (2005) Habitat and microhabitat distribution of stream-insects communities of Western Ghats. Current Science 89(6):976–987.

  8. 8.

    Thirumalai G (1986) On Gerridae and Notonectidae (Heteroptera: Hemiptera: Insecta) from Silent Valley. Kerala. Rec. zool. Surv. India 84(1–4):9–33.

  9. 9.

    Thirumalai G (1989) Aquatic and semi-aquatic hemiterans (insecta) of Javadi hills, Tamilnadu. Zool. Sur. India. Occasion. Paper No.118. p55.

  10. 10.

    Thirumalai G (1994a) Aquatic and semi-Aquatic Hemiptera (Insecta) of Tamilnadu. I. Dharmapuri and Pudukkottai Districts. Rec. zool. Surv. India, Occ. Pap.No.165:1–45.

  11. 11.

    Thirumalai G (1994b) On the Genus Rhagovelia Mayr from India with a new record and description of a new species (Rhagoveliinae: Veliidae: Heteroptera). Records of the Zoological Survey of India, 94(2–4): 381–394.

  12. 12.

    Thirumalai G (1999) Aquatic and semi-aquatic Heteroptera of India. Indian Association of Aquatic Biologists (lAAB) Publication No 1:1–74.

  13. 13.

    Thirumalai G (2001) Insecta-Aquatic and semi-aquatic Heteroptera. Zool. Surv. India. Fauna of conservation Area Series, 11, Fauna of Nilgiri Biosphere Reserve 111–127.

  14. 14.

    Thirumalai G (1983) New record of two species of the genus Anisops Spinola (Hemiptera: Insecta) from the lower Western Ghats, Kerala. Bull. Zool. Surv. India. 5(1):123–124.

  15. 15.

    Thirumalai G (2007) A Synoptic List of Nepomorpha (Hemiptera: Heteroptera) from India. Records of the Zoological Survey of India Occassional Paper 273:1–84.

  16. 16.

    Thirumalai G, Radhakrishnan C (1999) Aquatic Hemiptera (Insecta) of Kasargod District, Kerala State. Rec. zool. Surv. India, 97(3):123–139.

  17. 17.

    Thirumalai G, Suresh Kumar R (2006) Insecta: Hemiptera Zoo. Surv. India. Conservation Area Series. 27, Fauna of Biligiri Rangaswamy Temple Wildlife Sanctuary 59–82.

  18. 18.

    Thirumalai G (2002) A check list of Gerromorpha (Hemiptera) from India. Records of the Zoological Survey of India 100 (Part 1–2): 55–97.

  19. 19.

    Thirumalai G (2004) A checklist of aquatic and semi-aquatic Hemiptera (Insecta) of Karnataka. Records of the Zoological Survey of India, 102(1–2): 57–72.

  20. 20.

    Zettel H (1997a) Limnotrephes minutissimus sp. n (Heteroptera: Helotrephidae) aus Indien. Linzer Biologische Beiträge, 29(2): 683–687.

  21. 21.

    Zettel H (1997b) One new genus and two new species of Helotrephidae (Insecta:Heteroptera) from India, with notes on the phylogeny of the family. Annalendes Naturhistorischen Museums in Wien, 99B: 83–95.

  22. 22.

    Zettel H (2000) Aphelocheirus boukali sp. n. (Heteroptera: Aphelocheiridae) aus Sudindien. Zeitschrift der Arbeitsgemeinschaft österreichischer. Entomologen, 52: 11–14.

  23. 23.

    Zettel H (2001) Die Indische Zwergschwimmwanze Nanonaucoris gen. n. eine neue gattung der Naucorini (Heteroptera: Naucoridae) aus Sudindien. Linzer Biologische Beiträge, 33(2): 1085–1095.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundar, S., Silva, D.P., de Oliveira Roque, F. et al. Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. J Insect Conserv 25, 229–241 (2021). https://doi.org/10.1007/s10841-021-00298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-021-00298-8

Keywords

Navigation