Skip to main content

Advertisement

Log in

Lunar feldspathic meteorite Dhofar 081: Petrochemical constraints on petrogenesis

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Abstract

Two alternative petrogenetic models, plagioclase flotation and serial magmatism have been proposed to explain the origin of the lunar anorthositic crust, covering ~80% of the lunar highland. In this study, we re-examine the possible relict igneous texture present in an inferred lunar highland breccia clast (area ~1 mm2) in the Dhofar 081 meteorite. Our new petrographic and in-situ mineral microprobe chemical data on this clast show this coarse grained (average grain size ~0.5 mm) clast preserves relict igneous texture where subhedral, prismatic low-Ca pyroxene has intergrown with anhedral anorthitic plagioclase, suggesting its eutectic crystallization from its parent silicate magma. Absence of maskelynite and similarity of Na, K contents of plagioclase with the FAN assemblages negate the possibility of crystallization of the studied relict clast from an impact melt. The mineral-chemical data of Dhofar 081 suggest it is FAN (Ferroan anorthosite) in composition (after Warren in Annu. Rev. Earth Planet. Sci. 13:201–240, 1985). Hence, intergrown crystallization of minerals in the present relict igneous clasts and other reported FAN samples argues against a cumulate origin of the lunar anorthosite. The orthopyroxenes present in the unbrecciated portion of this meteoritic clast include bimodal low- and high-iron geochemical sub-groups. The application of orthopyroxene and plagioclase thermobarometry (after Gasparik in Contrib. Mineral. Petrol. 96:357–370, 1987) on our new microprobe data, and also two-pyroxene thermometry (after Lindsley in Am. Mineral. 68:477–493, 1983; Putirka in Rev. Mineral. Geochem. 69(1):61–120, 2008) on our new microprobe data and synthesis of literature data constrain the pressure and temperature of crystallization of lunar anorthosite parent magma close to 8 kbar and 1050°C, respectively. Application of Fo–An–Q experimental phase diagram at high pressure (up to 20 kbar) negates the possibility of generation of lunar anorthosite from a lherzolite source, the parent magma of these anorthosites probably lie on or close to Fo–An join of this phase diagram close to the spinel field.

Research Highlights

  • Lunar anorthositic meteorite represents the global highland crust of Moon.

  • Relict igneous clast of lunar anorthositic meteorite shows intergrown texture vis-a-vis eutectic crystallisation.

  • Pressure and temperature of crystallisation of parent magma close to 8 kbar and 1050°C.

  • Serial magmatism is consistent to explain the textural and mineral-chemical characters and vis-à-vis petrogenesis of lunar anorthosite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data source: Cahill et al. (2004), Floss et al. (1998) and this study. Note the unbrecciated portion of Dhofar 081 meteorite plots in FAN field in both diagrams.

Figure 6

Data source: Haggerty (1971) and this study.

Figure  7
Figure 8

Data source: Cahill et al. (2004), Wieczorek et al. (2006). The normative hypersthenes in lunar anorthosite are recalculated to olivine plus silica, and necessary corrections in normative compositions are made for this plot, accordingly. These corrections are reasonable because textural studies suggest that anorthitic plagioclase and olivine were the first phases to crystallize from the parent magma of Dhofar group of meteorite (Cahill et al. 2004). For further details see text.

References

  • Arai T, Takeda H, Yamaguchi A and Ohtake M 2008 A new model of lunar crust: Asymmetry in crustal composition and evolution; Earth Planet. Space 60 433–444.

    Google Scholar 

  • Ashwal L D 1993 Anorthosites, vol. 21, Series on ‘Minerals and Rocks’; Springer, Berlin, 422p.

  • Borg L E, Connelly J N, Boyet M and Carlson R W 2011 Chronological evidences that the Moon is either young or did not have a global magma ocean; Nature, https://doi.org/10.1038/nature10328.

    Article  Google Scholar 

  • Borg L E, Gaffney A M and Shearer C K 2015 A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages; Meteorit. Planet. Sci. 50 715–732.

    Article  Google Scholar 

  • Borg L E, Connelly J N, Cassata W S, Gaffney A M and Bizzaro M 2017 Chronologic implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite; Geochim. Cosmochim. Acta 201 377–391.

    Article  Google Scholar 

  • Borghini G, Fumagalli P and Rampone E 2009 The stability of plagioclase in the upper mantle: Subsolidus experiments on fertile and depleted lherzolite; J. Petrol. 51(1–2) 229–254.

    Google Scholar 

  • Cahill J T, Floss C, Anand M, Taylor L A, Nazarov M A and Cohen B A 2004 Petrogenesis of lunar highland meteorites: Dhofar 025, Dhofar 081, Dar al Gani 400; Meteorit. Planet. Sci. 39 503–529.

    Article  Google Scholar 

  • Chaudhuri T, Wan Y, Mazumder R, Ma M and Liu D 2018 Evidence of enriched, hadean mantle reservoir from 4.2–4.0 Ga zircon xenocrysts from paleoarchean TTGs of the Singhbhum craton, eastern India; Sci. Reports 8 7069, https://doi.org/10.1038/s41598-018-25494-6.

    Article  Google Scholar 

  • Condie K C 1982 Plate tectonics and crustal evolution; 2nd edn, Pergamon Press Inc, Oxford, 305p.

    Google Scholar 

  • Crawford I A and Joy K H 2014 Lunar exploration: Opening a window into the history and evolution of the inner solar system; Phil. Trans. Roy. Soc. A 372 20130315, https://doi.org/10.1098/rsta.2013.0315.

    Article  Google Scholar 

  • Crites C T, Lucey P G and Taylor G J 2015 The mafic component of the lunar crust: Constraints on the crustal abundance of mantle and intrusive rock and the mineralogy of lunar anorthosites; Am. Mineral. 100(8) 1708–1716.

    Article  Google Scholar 

  • Elkiins-Tanton L T, Burgess S and Yin Q-Z 2011 The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology; Earth Planet. Sci. Lett. 304 326–336.

    Google Scholar 

  • Floss C, James O B, McGee J J and Crozaz G 1998 Lunar ferroan anorthosite petrogenesis: Clues from trace distributions in FAN subgroups; Geochim. Cosmochim. Acta 62 1255–1283.

    Article  Google Scholar 

  • French B M 1998 Traces of catastrophe: Houston, Texas, Lunar and Planetary Institute, 120p.

    Google Scholar 

  • French B M and Koeberl C 2010 The convincing identification of terrestrial impact meteorite impact structures: What rocks, what doesn’t and why; Earth Sci. Rev. 98 123–170.

    Article  Google Scholar 

  • Gasparik T 1987 Orthopyroxene thermobarometry in simple and complex systems; Contrib. Mineral. Petrol. 96 357–370.

    Article  Google Scholar 

  • Gibson R L, Reimold W U, Ashley A J and Koeberl C 2002 Metamorphism on the Moon: A terrestrial analogue in the Vredefort dome, South Africa; Geology 30 475–478.

    Article  Google Scholar 

  • Goodrich C A, Taylor G J, Keil K, Boynton W V and Hill D H 1984 Petrology and chemistry of hyper ferroan anorthosites and other clasts from lunar meteorite ALHA81005; In: Proceedings of the 15th Lunar and Planetary Science Conference, Part 1; J. Geophys. Res. 88(Suppl.) C87–C94.

  • Greenhagen B T and Lucey P G et al. 2010 Global silicate mineralogy of the Moon from the Diviner lunar radiometer; Science 329 1507–1509.

    Article  Google Scholar 

  • Greshake A, Schmitt R T, Stoffler D, Patsch M and Scultz L 2001 Dhofar 081: A new lunar highland meteorite; Meteorit. Planet. Sci. 36 459–470.

    Article  Google Scholar 

  • Gross J, Treiman A H and Mercer C N 2014 Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust; Earth Planet. Sci. Lett. 388 318–328.

    Google Scholar 

  • Gross J and Joy K H 2016 Evolution, lunar: From magma ocean to crust formation; Encyclopedia of Lunar Science, 20p.

  • Haggerty S E 1971 Compositional variations in lunar spinels. Nature Phys. Sci. 233 156–160.

    Article  Google Scholar 

  • Haggerty S E 1973 Luna 20: Mineral chemistry of spinel, pleonaste, chromite, ulvöspinel, ilmenite and rutile; Geochim. Cosmochim. Acta 37 L857–867.

    Article  Google Scholar 

  • Hirose K 1997 Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts; Geology 25(1) 42–44.

    Article  Google Scholar 

  • Korotev R L 2005 Lunar geochemistry as told by lunar meteorites; Chem. Erde 65 297–346.

    Google Scholar 

  • Lindsley D H 1983 Pyroxene thermometry; Am. Mineral. 68 477–493.

    Google Scholar 

  • Liu T C and Presnall D C 1990 Liquidus phase relationships on the join anorthite-forsterite-quartz at 20 kbar with applications to basalt petrogenesis and igneous sapphirine; Contrib. Mineral. Petrol. 104 735–742.

    Article  Google Scholar 

  • Longhi J and Ashwal L 1985 Two-stage models for lunar and terrestrial anorthosites: Petrogenesis without a magma ocean; J. Geophys. Res. Solid Earth 90 C571–C584, https://doi.org/10.1029/jb090is02p571.

    Article  Google Scholar 

  • Longhi J 2003 A new view of lunar ferroan anorthosites: Postmagma ocean petrogenesis; J. Geophys. Res. Planets 108 5083.

    Article  Google Scholar 

  • Marks N A, Borg L E and Gaffney A M 2014 Evidence for young anorthitic magmatism on the Moon from Sm–Nd isotopic measurements for ferroan anorthosite clast 3A from breccia 60016; 45th Lunar and Planetar Science Conference, Houston, Texas. Abstract#1129.

  • McCallum I S and Schwartz J M 2001 Lunar Mg suite: Thermobarometry and petrogenesis of parental magmas; J. Geophys. Res. 106 27,969–27,983.

    Article  Google Scholar 

  • McGee J J 1993 Lunar ferroan anorthosites: Mineralogy, compositional variations, and petrogenesis; J. Geophys. Res. 98 9089–9105.

    Article  Google Scholar 

  • Meyer C 2013 Lunar sample compendium; http://curator.jsc.nasa.gov/lunar/lsc/index.cfm.

  • Nagaoka H, Takeda H, Karouji Y, Ohtake M, Yamaguchi A, Yoneda S and Hasebe N 2014 Implications for the origins of pure anorthosites found in the feldspathic lunar meteorites, Dhofar 489 group; Earth Planets. Space 66 115.

    Article  Google Scholar 

  • Nemchin A A, Pidgeon R T, Healy D, Grange M L, Whitehouse M J and Vaughan J 2009 The comparative behavior of apatite-zircon U–Pb systems in Apollo 14 breccias: Implications for the thermal history of the Fra Mauro Formation; Meteorit. Planet. Sci. 44 1717–1734.

    Article  Google Scholar 

  • Ohtake M and Takeda H et al. 2009 The global distribution of pure anorthosite on the Moon; Nature 461 236–240.

    Article  Google Scholar 

  • Pernet-Fisher J F, Deloule E and Joy K H 2019 Evidence of chemical heterogeneity within lunar anorthosite parental magmas; Geochim. Cosmochim. Acta, https://doi.org/10.1016/j.gca.2019.03.033.

    Book  Google Scholar 

  • Pouchou J L and Pichoir F 1988 A simplified version of the PAP model for matrix corrections in EPMA; In: Microbeam Analyses: 1988 (ed.) Newbury D E, San Francisco Press, pp. 315–318.

  • Prissel T C, Parman S W, Jackson C R M, Rutherford M J, Hess P C, Head J W, Cheek L, Dhingra D and Pieters C M 2014 Pink Moon: The petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism; Earth Planet. Sci. Lett. 403 144–156.

    Article  Google Scholar 

  • Putirka K D 2008 Thermometers and barometers for volcanic systems; Rev. Mineral. Geochem. 69(1) 61–120.

    Article  Google Scholar 

  • Rankenburg K, Brandon A D and Neal C R 2006 Neodymium isotope evidence for a chondritic composition of the Moon; Science 312 1369–1372.

    Article  Google Scholar 

  • Ray D and Shukla A D 2018 The Mukundpura meteorite, a new fall of CM chondrite; Planet. Space Sci. 151 149–154.

    Article  Google Scholar 

  • Rowe M L 2016 Petrology and geochemistry of the Eoarchaean Manfred Complex: Origin and components; Geological Survey of Western Australia, Record 2016/22, 150p.

    Google Scholar 

  • Russell S S, Joy K H, Jeffries T E, Consolmango G J and Kearsley A 2014 Heterogeneity in lunar anorthosite meteorites: Implications for the lunar magma ocean model; Phil. Trans. Roy. Soc. A 372 20130241, http://dx.doi.org/10.1098/rsta.2013.0241.

    Article  Google Scholar 

  • Sander B 1950 EinfuÈhrung in die GefuÈgekunde der Geologischen KoÈrper; Vol. 2, Springer Verlag, Vienna.

    Book  Google Scholar 

  • Shearer C K, Hess P C and Wieczorek M A et al. 2006 Thermal and magmatic evolution of the Moon; Rev. Mineral. Geochem. 60 365–518.

    Article  Google Scholar 

  • Shi P and Lobourel G 1991 The effects of FeO on the system CMAS at low pressure and implications for basalt crystallization processes; Contrib. Mineral. Petrol. 108 129–145.

    Article  Google Scholar 

  • Solomon S C and Head J W 1979 Vertical movement in Mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history; J. Geophys. Res. 84 1667–1682.

    Article  Google Scholar 

  • Takeda H, Yamaguchi A, Bogard D D, Karouji Y, Ebihara M, Ohtake M, Saiki K and Arai T 2006 Magnesian anorthosites and a deep crustal rock from the farside crust of the moon; Earth Planet. Sci. Lett. 247 171–184.

    Article  Google Scholar 

  • Taylor G T 2009 Ancient lunar crust: Origin, composition, and implications; Elements 5 7–22, https://doi.org/10.2113/gselements.5.1.17.

    Article  Google Scholar 

  • Treiman A H and Gross J 2013 Basalt related to lunar Mg-suite plutonic rocks: A fragment in lunar meteorite ALH81005; In: 76th Annual Meteoritical Society Meeting#5183.

  • Usui T, Jones J H and Mittlefehldt D W 2015 A partial melting of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129; Meteorit. Planet. Sci. 50 759–781.

    Article  Google Scholar 

  • Vaughan W M, Head J W, Wilson L and Hess P 2013 Geology and petrology of enormous volumes of impact melt on the Moon: A case study of the Orientale basin impact melt sea; Icarus 223(2) 749–765.

    Article  Google Scholar 

  • Warner J L, Phinney W C, Bickel C E and Simond C H 1977 Feldspathic granulitic impactite sand pre-final bombardment lunar evolution; In: Proc. Lunar Sci. Conf. 8th, pp. 2051–2066.

  • Warren P H 1985 The magma ocean concept and lunar evolution; Annu. Rev. Earth Planet. Sci. 13 201–240.

    Article  Google Scholar 

  • Warren P H and Wasson J T 1977 Pristine nonmare rocks and the nature of the lunar crust; In: Proc. Lunar Sci. Conf. 8th, pp. 2215–2235.

  • Warren P H and Wasson J T 1979 Origin of KREEP; Rev. Geophys. 17 73–88.

    Article  Google Scholar 

  • Warren P H 1990 The magma ocean concept and lunar evolution; Ann. Rev. Earth Planet. Sci. 13 201–240.

    Article  Google Scholar 

  • Warren P H 1993 Aconcise compilation of petrologic information on possibly pristine nonmare Moon rocks; Am. Mineral. 78 360–376.

    Google Scholar 

  • Weatherill G W 1976 The role of large bodies in the formation of the earth and moon; Proc. Lunar Sci. Conf. 7th, pp. 3245–3257.

  • Wieczorek M A and Jolliff B L et al. 2006 The constitution and structure of the lunar interior; Rev. Mineral. Geochem. 60 221–364, http://dx.doi.org/10.2138/rmg.2006.60.3,2006.

    Article  Google Scholar 

  • Wieczorek M A, Neumann G A, Nimmo F, Kiefer W S, Taylor G J, Melosh H J, Phillips R J, Soloman S C, Andrews-Hanna J C, Asmar S W, Konopliv A S, Lemoine F G, Smith D E, Watkins M M, Williams J G and Zuber M T 2013 The crust of the Moon as seen by GRAIL; Science 339(6120) 671–675.

    Article  Google Scholar 

  • Wood J A, Dickey Jr J S, Marvin U B and Powell B N 1970 Lunar anorthosites; Science 167 602–604.

    Article  Google Scholar 

  • Yoder H S and Tilley C E 1962 Origin of basalt magmas: An experimental study of natural and synthetic rock systems; J. Petrol. 3 342–532.

    Article  Google Scholar 

Download references

Acknowledgements

DR acknowledges to the Natural History Museum, London (sincere thanks to S S Russell and N Almeida), for providing the lunar meteorite sample Dhofar 081 (BM2004, M5, P12263), and the Department of Space (Government of India) for financial support for this research. SM is indebted to NRF, South Africa (Grant No. 91089) for this study. Critical comments by two anonymous reviewers and Rajneesh Bhutani, Associate Editor are greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the manuscript.

Corresponding author

Correspondence to Dwijesh Ray.

Additional information

Communicated by Rajneesh Bhutani

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, D., Misra, S. & Nelson, D.R. Lunar feldspathic meteorite Dhofar 081: Petrochemical constraints on petrogenesis. J Earth Syst Sci 130, 39 (2021). https://doi.org/10.1007/s12040-020-01499-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01499-6

Keywords

Navigation