Skip to main content
Log in

Features of iron accumulation at high concentration in pulcherrimin-producing Metschnikowia yeast biomass

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In previous studies it was found that the antimicrobial properties of pulcherrimin-producing Metschnikowia species are related to the formation of a red pigment—pulcherrimin and sequestration of free iron from their growth medium. For strains of Metschnikowia pulcherrima, M. sinensis, M. shaxiensis, and M. fructicola, at a high, ≈80 mg/kg, elemental Fe concentration in agar growth media we observed the essentially different (metal luster, non-glossy rust like, and colored) yeast biomass coatings. For the studied strains the optical and scanning electron microscopies showed the increased formation of chlamydospores that accumulate a red pigment—insoluble pulcherrimin rich in iron. The chlamydospore formation and decay depended on the iron concentration. In this study pulcherrimin in biomass of the selected Metschnikowia strains was detected by Mössbauer spectroscopy. At ≈80 mg/kg elemental Fe concentration the Mössbauer spectra of biomass of the studied strains were almost identical to these of purified pulcherrimin. Iron in pulcherrimin reached ≈1% of biomass by weight which is very high in comparison with elemental Fe percentage in growth medium and is not necessary for yeast growth. The pulcherrimin in biomass was also observed by Mössbauer spectroscopy at lower, ≈5 mg/kg, elemental Fe concentration. Through chemical binding of iron pulcherrimin sequestrates the soluble Fe in the growth media. However, at high Fe concentrations, the chemical and biochemical processes lead to the pulcherrimin accumulation in biomass chlamydospores. When soluble iron is sequestrated or removed from the growth media in this way, it becomes inaccessible for other microorganisms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from places shown by numbers in (a1); c1 M10 and M.p. at 5 mg/kg elemental Fe concentration after 22 h and c2 4 days; d1 M10 at 22 mg/kg elemental Fe concentration after 20 days and Liesegang rings of pulcherrimin around biomass, growth medium thickness is 2–3 mm; d2 same medium, biomass washed from the surface; e M4, M6, M7 (M. pulcherrima) and M10 strains at ≈80 mg/kg elemental Fe concentration after 22 h, and f scheme of biomass coatings accumulating pulcherrimin

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  Google Scholar 

  2. Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  3. Templeton D (ed) (2002) Molecular and cellular iron transport. Marcel Dekker, New York

    Google Scholar 

  4. Krause DJ, Kominek J, Opulente DA, Shen X-X, Zhou X, Langdon QK, DeVirgilio J, Hulfachor AB, Kurtzman CP, Rokas A, Hittinger CT (2018) Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. PNAS 115:11030–11035

    Article  CAS  Google Scholar 

  5. MacDonald JC (1963) The structure of pulcherriminic acid. Can J Chem 41:165–172

    Article  CAS  Google Scholar 

  6. Sipiczki M (2020) Metschnikowia pulcherrima and related pulcherrimin-producing yeasts: fuzzy species boundaries and complex antimicrobial antagonism. Microorganisms 8:1029

    Article  CAS  Google Scholar 

  7. Kluyver AJ, Walt JP, Triet AJ (1953) Pulcherrimin, the pigment of Candida pulcherrima. PNAS 39:583–593

    Article  CAS  Google Scholar 

  8. Cook AH, Slater CA (1954) Metabolism of “wild” yeasts I. The chemical nature of pulcherrimin. J Inst Brew 60:213–217. https://doi.org/10.1002/j.2050-0416.1954.tb06226.x

    Article  CAS  Google Scholar 

  9. Canale-Parola E (1963) A red pigment produced by aerobic sporeforming bacteria. Archiv für Mikrobiologie 46:414–427

    Article  CAS  Google Scholar 

  10. Wang D, Zhan Y, Cai D, Li X, Wang Q, Chen S (2018) Regulation of the synthesis and secretion of the iron chelator cyclodipeptide pulcherriminic acid in Bacillus licheniformis. Appl Environ Microbiol 84:e00262-e318

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Cryle MJ, Bell SG, Schlichting I (2010) Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo- L -leucyl- L -leucyl dipeptide oxidase. Biochemistry 49:7282–7296

    Article  CAS  Google Scholar 

  12. Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724

    Article  CAS  Google Scholar 

  13. Kupfer DG, Uffen RL, Canale-Parola E (1967) The role of iron and molecular oxygen in pulcherrimin synthesis by bacteria. Archiv für Mikrobiologie 56:9–21

    Article  CAS  Google Scholar 

  14. Wésolowski-Louvel M, Breuning KD, Fukuhara H (1996) Kluyveromyces lactis. In: Wolf K (ed) Non conventional yeasts in biotechnology. Springer Verlag, Berlin Hidelberg, pp 138–201

    Google Scholar 

  15. Li X, Wang D, Cai D, Zhan Y, Wang Q, Chen S (2017) Identification and high-level production of pulcherrimin in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183:1323

    Article  CAS  Google Scholar 

  16. Janisiewicz WJ, Tworkoski TJ, Kurtzman CP (2001) Biocontrol potential of Metschnikowia pulcherrima strains against blue mold of apple. Phytopathology 91:1098–1108

    Article  CAS  Google Scholar 

  17. Spadaro D, Gullino ML (2004) State of the art and future prospects of the biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194

    Article  Google Scholar 

  18. Saravanakumar D, Ciavorella A, Spadaro D, Garibaldi A, Gullino ML (2008) Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternate and Penicillium expansum in apples through iron depletion. Postharvest Biol Technol 49:121–128

    Article  CAS  Google Scholar 

  19. Turkel S, Ener B (2009) Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Zeitschrift für Naturforschung C 64:405–410

    Article  CAS  Google Scholar 

  20. Csutak O, Vassu T, Sarbu I, Stoica I, Cornea P (2013) Antagonistic activity of three newly isolated yeast strains from the surface of fruits. Food Technol Biotechnol 51:70–77

    Google Scholar 

  21. Oro L, Ciani M, Comitini F (2014) Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol 116:1209–1217

    Article  CAS  Google Scholar 

  22. Kantor A, Hutkova J, Petrova J, Hleba L, Kacaniova M (2015) Antimicrobial activity of pulcherrimin pigment produced by Metschnikowia pulcherrima against various yeast species. J Microbiol Biotechnol Food Sci 5:282–285

    CAS  Google Scholar 

  23. Melvydas V, Svediene J, Skridlaite G, Vaiciuniene J, Garjonyte R (2020) In vitro inhibition of Saccharomyces cerevisiae growth by Metschnikowia spp. triggered by fast removal of iron via two ways. Brazil J Microbiol 51:1953–1964

    Article  CAS  Google Scholar 

  24. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  25. Cockrell AL, Holmes-Hampton GP, McCormick SP, Chakrabarti M, Lindahl PA (2011) Mössbauer and EPR study of iron in vacuoles from fermenting Saccharomyces cerevisiae. Biochemistry 50:10275–10283

    Article  CAS  Google Scholar 

  26. Park J, McCormick SP, Cockrell AL, Chakrabarti M, Lindahl PA (2014) High-spin ferric ions in Saccharomyces cerevisiae vacuoles are reduced to the ferrous state during adenine-precursor detoxification. Biochemistry 53:3940–3951

    Article  CAS  Google Scholar 

  27. Pitt JI, Miller MW (1968) Sporulation in Candida pulcherrima, Candida Reukaufii and Chlamydozyma species: their relationships with Metschnikowia. Mycologia 60:663–685

    Article  Google Scholar 

  28. Lachance M-A (2016) Metschnikowia: half tetrads, a regicide and the fountain of youth. Yeast 33:563–574

    Article  CAS  Google Scholar 

  29. Kurtzman CP, Boekhout T, Robert V, Fell JW, Deak T (2003) Methods to identify yeasts. In: Boekhout T, Robert V (eds) Yeasts in food. Benificial and detrimental aspects. Behr’s Verlag, Hamburg, pp 69–121

    Chapter  Google Scholar 

  30. Chen Y-L, Yang D-P (2007) Mössbauer effect in lattice dynamics. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Book  Google Scholar 

  31. Christides T, Sharp P (2013) Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells. PLoS ONE 8:e83031

    Article  CAS  Google Scholar 

  32. Melvydas V, Staneviciene R, Balynaite A, Vaiciuniene J, Garjonyte R (2016) Formation of self-organized periodic patterns around yeasts secreting a precursor of a red pigment. Microbiol Res 193:87–93

    Article  CAS  Google Scholar 

  33. Racz Z (1999) Formation of Liesegang patterns. Phys A 274:50–59

    Article  CAS  Google Scholar 

  34. Karpati-Smidroczki E, Büki A, Zrínyi M (1995) Pattern forming precipitation in gels due to coupling of chemical reactions with diffusion. Colloid Polym Sci 273:857–865

    Article  CAS  Google Scholar 

  35. Raymond KN, Allred BE, Sia AK (2015) Coordination chemistry of microbial iron Transport. Acc Chem Res 48:2496–2505

    Article  CAS  Google Scholar 

  36. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J Bacteriol 169:5873–5876

    Article  CAS  Google Scholar 

  37. Matzanke BF, Winkelmann G (1981) Siderophore iron transport followed by Mössbauer Spectroscopy. FEBS Lett 130:50–53

    Article  CAS  Google Scholar 

  38. Matzanke BF, Ecker DJ, Yang T-S, Huynh BH, Müller G, Raymond KN (1986) Escherichia coli iron Enterobactin uptake monitored by Mössbauer spectroscopy. J Bacteriol 167:674–680

    Article  CAS  Google Scholar 

  39. Matzanke BF, Berner I, Bill I, Trautwein AX, Winkelmann G (1991) Transport and utilization of ferrioxamine-E-bound iron in Erwinia herbicola (Pantoea agglomerans). Biol Metals 4:181–185

    Article  CAS  Google Scholar 

  40. Matzanke BF, Möllmann U, Reissbrodt R, Schünemann V, Trautwein AX (1998) Siderophore transport in mycobacteria analyzed by Mössbauer spectroscopy: Possible routes to novel antibiotics against these organisms? Hyperfine Interact 112:123–128

    Article  CAS  Google Scholar 

  41. Vertes A, Nagy DL (eds) (1990) Mössbauer spectroscopy of frozen solutions. Akadémiai Kiadó, Budapest

    Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors are grateful to Z. Kuodis for the FT-IR spectra and to R. Juškėnas for XRD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kęstutis Mažeika.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1694 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mažeika, K., Šiliauskas, L., Skridlaitė, G. et al. Features of iron accumulation at high concentration in pulcherrimin-producing Metschnikowia yeast biomass. J Biol Inorg Chem 26, 299–311 (2021). https://doi.org/10.1007/s00775-021-01853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01853-z

Keywords

Navigation