Skip to main content
Log in

The Effect of Geometry on Structural Behavior of Buildings with Steel Plate Shear Wall System Subjected to Blast Loading

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

Many important public buildings have suffered significant damages due to terrorist attacks in the last few decades. This paper investigates the behavior of structures with steel plate shear wall lateral load resisting system under various blast loadings. A number of twenty steel frames with different heights and widths subjected to four different blast scenarios are modeled and analyzed in opensees software. The results showed that structures with steel plate shear wall systems subjected to blast loading have better behavior in high-rise structures than in low-rise structures in terms of drift and ductility ratio. The steel plate shear wall system exhibited shear-dominated, flexural-dominated, and shear-flexural behavior in low-rise, high-rise, and mid-rise structures, respectively. Besides, in mid-rise and high-rise structures, the roof’s maximum horizontal acceleration occurs in free vibration, whereas in low-rise structures, this amount is experienced during loading. Furthermore, the maximum horizontal displacement of the roof occurs in free vibration, and as the number of stories increases, this amount will occur later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agrawal, H., & Mishra, A. K. (2020). An innovative technique of simplified signature hole analysis for prediction of blast-induced ground vibration of multi-hole/production blast: an empirical analysis. Natural Hazards, 100(1), 111–132.

    Article  Google Scholar 

  • AISC (2016) Seismic Provisions for Structural Steel Buildings AISC. AISC. 341–16

  • Alinia, M. M., & Dastfan, M. (2006). Behaviour of thin steel plate shear walls regarding frame members. Journal of Constructional Steel Research, 62, 730–738. https://doi.org/10.1016/j.jcsr.2005.11.007.

    Article  Google Scholar 

  • Alinia, M. M., Habashi, H. R., & Khorram, A. (2009). Nonlinearity in the postbuckling behaviour of thin steel shear panels. Thin-Walled Structures, 47(4), 412–420. https://doi.org/10.1016/j.tws.2008.09.004.

    Article  Google Scholar 

  • ANSI/AISC 360–16 (2016) Specification for Structural Steel Buildings ANSI/AISC 360–16. AISC. https://doi.org/111

  • ASCE. (2010). Minimum Design Loads for Buildings and Other Structures ASCE 7–10. ASCE. https://doi.org/10.1061/9780784400920.

    Article  Google Scholar 

  • Astaneh-Asl, A. (2000). Steel Plate Shear Walls, In Proceedings, US-Japan Partnership for Advanced Steel Structures, US-Japan Workshop on Seismic Fracture Issues in Steel Structures.

  • Astaneh-Asl, Abolhassan (2001) Seismic behavior and design of steel shear walls. In SEOANC Seminar, Structural Engineers Assoc. of Northern California 1–18.

  • Astaneh-Asl, Abolhassan, & Zhao, Q. (2001). Cyclic tests of steel shear walls. Research project. Berkeley: Dept of Civil .1

  • Bamshad, O., & Ghassemieh, M (2020) Development of modified Ibarra–Krawinkler deterioration model for one-story steel plate shear wall. International Journal of Steel Structures. (2005). https://doi.org/10.1007/s13296-020-00407-4

  • Berman, J. W., & Bruneau, M. (2003). Plastic analysis and performance-based design of coupled steel plate shear walls. Engineering Structures, 129(November), 1448–1456. https://doi.org/10.1007/978-3-030-34216-6_10.

    Article  Google Scholar 

  • Berman, J. W., & Bruneau, M. (2008). Capacity design of vertical boundary elements in steel plate shear walls. Engineering Journal, 45(1), 57–71.

    Google Scholar 

  • Berman, J. W., Celik, O. C., & Bruneau, M. (2005). Comparing hysteretic behavior of light-gauge steel plate shear walls and braced frames. Engineering Structures, 27, 475–485. https://doi.org/10.1016/j.engstruct.2004.11.007.

    Article  Google Scholar 

  • BHRC (Building and Housing Research Center). (2013). Iranian National Building Code, Part 6. Tehran, Iran.

  • BHRC (Building and Housing Research Center). (2014). Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800 (4th edn.). Tehran, Iran.

  • BHRC (Building and Housing Research Center). (2016). Iranian National Building Code, Part 21 (2nd edn.). Tehran, Iran.

  • Brode, H. L. (1955). Numerical solutions of spherical blast waves. Journal of Applied Physics, 26, 766–775. https://doi.org/10.1063/1.1722085.

    Article  MathSciNet  MATH  Google Scholar 

  • Bruneau, M., & Berman, J. W. (2004). Steel plate shear walls are not plate girders. Third Quar: Engineering Journal.

    Google Scholar 

  • Byfield, M. P (2006) Behavior and design of commercial multi-story buildings Subjected to Blast. Journal of Performance of Constructed Facilities. 324–329.

  • Chen, J., Shu, W., & Li, J. (2017). Constitutive model of Q345 steel at different intermediate strain rates. International Journal of Steel Structures, 17(1), 127–137. https://doi.org/10.1007/s13296-016-0122-8.

    Article  Google Scholar 

  • Choi, I. R., & Park, H. G. (2010). Hysteresis model of thin infill plate for cyclic nonlinear analysis of steel plate shear walls. Journal of Structural Engineering, 136(11), 1423–1434. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000244.

    Article  Google Scholar 

  • Chopra, A. K. (2012). Dynamics of Structures (4th ed.), Prentice-hall International Series I Civil Engineering and Engineering Mechanics.

  • Coffield, A., & Adeli, H. (2014). An investigation of the effectiveness of the framing systems in steel structures subjected to blast loading. Journal of Civil Engineering and Management, 20(6), 767–777. https://doi.org/10.3846/13923730.2014.986667.

    Article  Google Scholar 

  • Driver, B. R. G., Kulak, G. L., Kennedy, D. J. L., & Elwi, A. E. (1998). Cyclic test of four-story steel plate shear wall. Journal of Structural Engineering, 124, 112–120.

    Article  Google Scholar 

  • Dusenberry, D. O (2010) Handbook for Blast-Resistant Design of Buildings. WILEY.

  • Elgaaly, M., Caccese, V., & Du, C. (1993). Postbuckling behavior of steel plate shear walls under cyclic loads. Journal of Structural Engineering, 119(2), 117–125.

    Article  Google Scholar 

  • Farahmand-Tabar, S., Barghian, M., & Vahabzadeh, M. (2019). Investigation of the progressive collapse in a suspension bridge under the explosive load. International Journal of Steel Structures, 19(6), 2039–2050. https://doi.org/10.1007/s13296-019-00263-x.

    Article  Google Scholar 

  • Ghobarah, A. (2001). Performance-based design in earthquake engineering: State of development. Engineering Structures, 23(8), 878–884. https://doi.org/10.1016/S0141-0296(01)00036-0.

    Article  Google Scholar 

  • Guo, L., Jia, M., Li, R., & Zhang, S. (2013). Hysteretic analysis of thin steel plate shear walls. International Journal of Steel Structures, 13(1), 163–174. https://doi.org/10.1007/s13296-013-1015-8.

    Article  Google Scholar 

  • Haciefendioglu, K., & Birinci, F. (2011). Peak factors of non-gaussianwind force. The Structural Design of Tall and Special Buildings. https://doi.org/10.1002/tal.

    Article  Google Scholar 

  • Hayes, J. R., Jr., Woodson, S. C., Pekelnicky, R. G., Poland, C. D., Corley, W. G., & Sozen, M. (2005). Can strengthening for earthquake improve blast and progressive collapse resistance? Journal of Structural Engineering, 131(8), 1157–1177.

    Article  Google Scholar 

  • Khandelwal, M., Kankar, P. K., & Harsha, S. P. (2010). Evaluation and prediction of blast induced ground vibration using support vector machine. Mining Science and Technology (China), 20(1), 64–70.

    Article  Google Scholar 

  • Khandelwal, M., & Singh, T. N. (2006). Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach. Journal of sound and vibration, 289(4–5), 711–725.

    Article  Google Scholar 

  • Jalali, S. A., & Banazadeh, M. (2016). Development of a new deteriorating hysteresis model for seismic collapse assessment of thin steel plate shear walls. Thin Walled Structures, 106, 244–257. https://doi.org/10.1016/j.tws.2016.05.008.

    Article  Google Scholar 

  • Li, B., & Pan & Nair, A. . (2011). A case study of the structural responses of a tall building in Singapore subjected to close-in detonations Bing. The Structural Design of Tall and Special Buildings, 20, 223–246. https://doi.org/10.1002/tal.

    Article  Google Scholar 

  • Lu, J. Y., Qiao, X. D., Liao, J., & Tang, Y. (2016). Experimental study and numerical simulation on steel plate shear walls with non-uniform spacing slits. International Journal of Steel Structures, 16(4), 1373–1380. https://doi.org/10.1007/s13296-016-0044-5.

    Article  Google Scholar 

  • Luccioni, B. M., Ambrosini, R. D., & Danesi, R. F. (2004). Analysis of building collapse under blast loads. Engineering Structures, 26(1), 63–71. https://doi.org/10.1016/j.engstruct.2003.08.011.

    Article  Google Scholar 

  • Mazzoni, S., Mckenna, F., Scott, M. H., & Fenves, G. L (2016) OpenSees Command Language Manual.

  • McDonald, B., Bornstein, H., Langdon, G. S., Curry, R., Daliri, A., & Orifici, A. C. (2018). Experimental response of high strength steels to localised blast loading. International Journal of Impact Engineering, 115(January), 106–119. https://doi.org/10.1016/j.ijimpeng.2018.01.012.

    Article  Google Scholar 

  • Moghimi, H., & Driver, R. G. (2015). Performance assessment of steel plate shear walls under accidental blast loads. Journal of Constructional Steel Research, 106, 44–56. https://doi.org/10.1016/j.jcsr.2014.11.010.

    Article  Google Scholar 

  • Needham, C. E. (2010). Blast Waves (Shock Wave and High Pressure Phenomena). Springer.

  • Newmark, N. M., & Hansen, R. J (1961) Design of blast resistant structures. Shock and vibration handbook.

  • Ngo, T., Mendis, P., Gupta, A., & Ramsay, J. (2007). Blast loading and blast effects on structures – An overview. Electronic Journal of Structural Engineering. (Special Issue).

  • Norris, G. H., Hansen, R. J., Holly, M. J., Biggs, J. M., & N., & S. and Minami, J. K. . (1959). Structural design for dynamic loads. New York: McGraw-Hill.

    Google Scholar 

  • Osteraas, J. D. (2006). Murrah building bombing revisited: A qualitative assessment of blast damage and collapse patterns. Journal of Performance of Constructed Facilities, 20(4), 330–335. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(330).

    Article  Google Scholar 

  • Pachideh, G., Gholhaki, M., & Saedi Daryan, A. (2019). Analyzing the damage index of steel plate shear walls using pushover analysis. Structures., 20, 437–451. https://doi.org/10.1016/j.istruc.2019.05.005.

    Article  Google Scholar 

  • Rana, M. M., Khan, A., Del Linz, P., Lee, C. K., & Fung, T. C. (2019). Effect of cased charges on plain steel and steel-concrete sandwich targets. Thin-Walled Structures., 136, 302–314. https://doi.org/10.1016/j.tws.2018.12.022.

    Article  Google Scholar 

  • Remennikov, A. M., & Rose, T. A. (2005). Modelling blast loads on buildings in complex city geometries. Computers and Structures, 83(27), 2197–2205. https://doi.org/10.1016/j.compstruc.2005.04.003.

    Article  Google Scholar 

  • Roberts, T. M., & S.-G. S. . (1992). Hysteretic characteristics of unstiffened perforated steel plate shear panels. Thin-Walled Structures, 14, 139–151.

    Article  Google Scholar 

  • Sabelli, R., & Bruneau, M. (2007). Steel Design Guide 20. AISC: Steel Plate Shear Wall.

    Google Scholar 

  • Sabouri-ghomi, S., & Asad Sajjadi, S. R. (2012). Experimental and theoretical studies of steel shear walls with and without stiffeners. Journal of Constructional Steel Research, 75, 152–159. https://doi.org/10.1016/j.jcsr.2012.03.018.

    Article  Google Scholar 

  • Saedi-Daryan, A., Soleimani, S., & Hasanzadeh, M. (2018). Extension of the modal pushover analysis to assess structures Exposed to blast load. Journal of Engineering Mechanics, 144(3), 1–8. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001417.

    Article  Google Scholar 

  • Saedi Daryan, A., Soleimani, S., & Ketabdari, H. (2018). A modal nonlinear static analysis method for assessment of structures under blast loading. Journal of Vibration and Control, 24(16), 3631–3640. https://doi.org/10.1177/1077546317708517.

    Article  MathSciNet  Google Scholar 

  • Sahoo, D. R., Sidhu, B. S., & Kumar, A. (2015). Behavior of unstiffened steel plate shear wall with simple beam-to-column connections and flexible boundary elements. International Journal of Steel Structures, 15(1), 75–87. https://doi.org/10.1007/s13296-015-3005-5.

    Article  Google Scholar 

  • Series, R. M. (2003). “Primer for design of commercial buildings to mitigate terrorist attacks.” FEMA 427.

  • Shan, L., Petrone, F., & Kunnath, S. (2019). Robustness of RC buildings to progressive collapse: Influence of building height. Engineering Structures, 183, 690–701.

    Article  Google Scholar 

  • Thorburn, L. J., Kulak, G. L., & Montgomery, C. J. (1983). Analysis of steel plate shear walls. University of Alberta.

  • U.S Army Corps of Engineers (2008) Unified Facilities Criteria ( UFC ) Structures to Resist the Effects of Accidental Explosions. Department of Defence USA.

  • Warn, G., & Bruneau, M. (2010). Blast Resistance of Steel Plate Shear Walls Designed for Seismic Loading. Journal of Structural Engineering, 135(10), 1222–1230.

    Article  Google Scholar 

  • Xue, M (1995) Behavior of Steel Shear Wall Panels and Frame-wall Systems.

  • Yao, S., Zhang, D., Chen, X., Lu, F., & Wang, W. (2016a). Experimental and numerical study on the dynamic response of R.C. slabs under blast loading. Engineering Failure Analysis, 66, 120–129. https://doi.org/10.1016/j.engfailanal.2016.04.027.

    Article  Google Scholar 

  • Yao, S., Zhang, D., & Lu, F. (2016b). Dimensionless number for dynamic response analysis of box-shaped structures under internal blast loading. International Journal of Impact Engineering, 98, 13–18. https://doi.org/10.1016/j.ijimpeng.2016.07.005.

    Article  Google Scholar 

  • Zirakian, T., & Zhang, J. (2015). Seismic design and behavior of low yield point steel plate shear walls. International Journal of Steel Structures, 15(1), 135–151. https://doi.org/10.1007/s13296-015-3010-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Saedi Daryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabanlou, M., Moghaddam, H. & Saedi Daryan, A. The Effect of Geometry on Structural Behavior of Buildings with Steel Plate Shear Wall System Subjected to Blast Loading. Int J Steel Struct 21, 650–665 (2021). https://doi.org/10.1007/s13296-021-00463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-021-00463-4

Keywords

Navigation