Skip to main content
Log in

Cell morphology, porosity, microstructure and mechanical properties of porous Fe-C-P alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Open cell steel foams were successfully fabricated through the powder metallurgy route using urea granules as the water leachable space holder in the present study. The influence of different amounts of phosphorus (0, 0.5wt%, 1wt%, 2wt%, and 4wt%) was investigated on the cell morphology, porosity, microstructure of cell walls, and mechanical properties of steel foams. The cell morphology and microstructure of the cell walls were evaluated using an optical microscope equipped with image processing software and a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. In addition, the compression tests were conducted on the steel foams using a universal testing machine. Based on microscopic images, the porous structure consists of spherical cells and irregularly shaped pores that are distributed in the cell walls. The results indicated that by increasing the phosphorus content, the porosity increases from 71.9% to 83.2%. The partially distributed ferrite and fine pearlite was observed in the microstructure of the cell walls, and α-Fe and Fe3P eutectic extended between the boundaries of agglomerated iron particles. Furthermore, elastic and long saw-toothed plateau regions were observed before fracture in the compressional stress—strain curves. According to the results, by increasing the phosphorus content from 0 to 4wt%, the plateau region of the stress—strain curves shifts to the right and upward. Therefore, increasing phosphorus content causes improvement in the mechanical properties of steel foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ashby, T. Evans, N.A. Fleck, J.W. Hutchinson, H.N.G. Wadley, and L.J. Gibson, Metal Foams: A Design Guide, Elsevier Inc, Butterworth-Heinemann, 2000.

  2. H.P. Degischer and B. Kriszt, Handbook of Cellular Metals, Production, Processing, Applications, Wiley-VCH Verlag GmbH, Weinheim, 2002.

    Book  Google Scholar 

  3. J. Banhart, Manufacture, characterization and application of cellular metals and metal foams, Prog. Mater. Sci., 46(2001), No. 6, p. 559.

    Article  CAS  Google Scholar 

  4. Y. Bienvenu, Application and future of solid foams, C.R. Phys., 15(2014), No. 8–9, p. 719.

    Article  CAS  Google Scholar 

  5. N. Gupta and P.K. Rohatgi, Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications, DEStech Publications, 2014.

  6. A.J. Otaru, Review on processing and fluid transport in porous metals with a focus on bottleneck structures, Met. Mater. Int., 26(2020), No. 4, p. 510.

    Article  Google Scholar 

  7. R. Kumar, H. Jain, S. Sriram, A. Chaudhary, A. Khare, V.A.N. Ch, and D.P. Mondal, Lightweight open cell aluminum foam for superior mechanical and electromagnetic interference shielding properties, Mater. Chem. Phys., 240(2020), art. No. 122274.

  8. C.J. Liu, Y.X. Zhang, and J. Li, Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core, Compos. Struct., 182(2017), p. 183.

    Article  Google Scholar 

  9. C. Liu, Y.X. Zhang, and L. Ye, High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core, Int. J. Impact Eng., 100(2017), p. 139.

    Article  Google Scholar 

  10. I. Duarte, M. Vesenjak, L. Krstulović-Opara, and Z. Ren, Crush performance of multifunctional hybrid foams based on an aluminium alloy open-cell foam skeleton, Polym. Test., 67(2018), p. 246.

    Article  CAS  Google Scholar 

  11. J.H. Fan, J.J. Zhang, Z.H. Wang, Z.Q. Li, and L.M. Zhao, Dynamic crushing behavior of random and functionally graded metal hollow sphere foams, Mater. Sci. Eng. A, 561(2013), p. 352.

    Article  CAS  Google Scholar 

  12. L.B. Li, Z.J. Zheng, J.L. Yu, and F.Y. Lu, Deformation and perforation of sandwich panels with aluminum-foam core at elevated temperatures, Int. J. Impact Eng., 109(2017), p. 366.

    Article  Google Scholar 

  13. L. Jing, Z.H. Wang, and L.M. Zhao, The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading, Composite Part B, 94(2016), p. 52.

    Article  Google Scholar 

  14. J.J. Wu, C.G. Li, D.B. Li, and M.C. Gui, Damping and sound absorption properties of particle reinforced Al matrix composite foams, Compos. Sci. Technol., 63(2003), No. 3–4, p. 569.

    CAS  Google Scholar 

  15. H. Huisseune, S. de Schampheleire, B. Ameel, and M. de Paepe, Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications, Int. J. Heat Mass Transfer, 89(2015), p. 1.

    Article  Google Scholar 

  16. D.Y. Kim, T.H. Sung, and K.C. Kim, Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system, Energy, 105(2016), p. 57.

    Article  CAS  Google Scholar 

  17. C.J. Tseng, Y.J. Heush, C.J. Chiang, Y.H. Lee, and K.R. Lee, Application of metal foams to high temperature PEM fuel cells, Int. J. Hydrogen Energy, 41(2016), No. 36, p. 16196.

    Article  CAS  Google Scholar 

  18. S.T. Kolaczkowski, S. Awdry, T. Smith, D. Thomas, L. Torkuhl, and R. Kolvenbach, Potential for metal foams to act as structured catalyst supports in fixed-bed reactors, Catal. Today, 273(2016), p. 221.

    Article  CAS  Google Scholar 

  19. J. Seok, K.M. Chun, S. Song, and J. Lee, An empirical study of the dry soot filtration behavior of a metal foam filter on a particle number concentration basis, Energy, 76(2014), p. 949.

    Article  Google Scholar 

  20. I. Garcia, E. Gracia-Escosa, M. Bayod, A. Conde, M.A. Arenas, J. Damborenea, A. Romero, and G. Rodríguez, Sustainable production of titanium foams for biomedical applications by Concentrated Solar Energy sintering, Mater. Lett., 185(2016), p. 420.

    Article  CAS  Google Scholar 

  21. S. Kashef, A. Asgari, T.B. Hilditch, W.Y. Yan, V.K. Goel, and P.D. Hodgson, Fracture toughness of titanium foams for medical applications, Mater. Sci. Eng. A, 527(2010), No. 29–30, p. 7689.

    Article  CAS  Google Scholar 

  22. J. Banhart, Production of metal foams, [in] P.W.R. Beaumont and C.H. Zweben, eds., Comprehensive Composite Materials II, 2nd ed., Elsevier, 2018, p. 347.

  23. S. Kim, and C.W. Lee, A review on manufacturing and application of open-cell metal foam, Procedia Mater. Sci., 4(2014), p. 305.

    Article  CAS  Google Scholar 

  24. B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer, and S.R. Arwade, Steel foam for structures: A review of applications, manufacturing and material properties, J. Constr. Steel. Res., 71(2012), p. 1.

    Article  Google Scholar 

  25. M.H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, H. Tajizadegan, and A. Jamshidi, Fabrication and evaluation of oxidation resistance performance of open-celled Fe(Al) foam by space-holder technique, Adv. Powder. Technol., 25(2014), No. 3, p. 960.

    Article  CAS  Google Scholar 

  26. B. Xie, Y.Z. Fan, T.Z. Mu, and B. Deng, Fabrication and energy absorption properties of titanium foam with CaCl2 as a space holder, Mater. Sci. Eng. A, 708(2017), p. 419.

    Article  CAS  Google Scholar 

  27. B.Q. Li, Z.Q. Li, and X. Lu, Effect of sintering processing on property of porous Ti using space holder technique, Trans. Nonferrous Met. Soc. China, 25(2015), No. 9, p. 2965.

    Article  CAS  Google Scholar 

  28. S.F. Aida, M.N. Hijrah, A.H. Amirah, H. Zuhailawati, and A.S. Anasyida, Effect of NaCl as a space holder in producing open cell A356 aluminium foam by gravity die casting process, Procedia Chem., 19(2016), p. 234.

    Article  CAS  Google Scholar 

  29. G.Z. Jia, Y. Hou, C.X. Chen, J.L. Niu, H. Zhang, H. Huang, M.P. Xiong, and G.Y. Yuan, Precise fabrication of open porous Mg scaffolds using NaCl templates: Relationship between space holder particles, pore characteristics and mechanical behavior, Mater. Des., 140(2018), p. 106.

    Article  CAS  Google Scholar 

  30. Y. Torres, J.J. Pavón, and J.A. Rodríguez, Processing and characterization of porous titanium for implants by using NaCl as space holder, J. Mater. Process. Technol., 212(2012), No. 5, p. 1061.

    Article  CAS  Google Scholar 

  31. E. Ruperez, J.M. Manero, K. Riccardi, Y.P. Li, C. Aparicio, and F.J. Gil, Development of tantalum scaffold for orthopedic applications produced by space-holder method, Mater. Des., 83(2015), p. 112.

    Article  CAS  Google Scholar 

  32. I. Unver, H.O. Gulsoy, and B. Aydemir, Ni-625 superalloy foam processed by powder space-holder technique, J. Mater. Eng. Perform., 22(2013), No. 12, p. 3735.

    Article  CAS  Google Scholar 

  33. D.R. Tian, Y.H. Pang, L. Yu, and L. Sun, Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 793.

    Article  CAS  Google Scholar 

  34. H. Bafti and A. Habibolahzadeh, Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Mater. Des., 31(2010), No. 9, p. 4122.

    Article  CAS  Google Scholar 

  35. S.A. Hosseini, R. Yazdani-Rad, A. Kazemzadeh, and M. Alizadeh, A comparative study on the mechanical behavior of porous titanium and NiTi produced by a space holder technique, J. Mater. Eng. Perform., 23(2014), No. 3, p. 799.

    Article  CAS  Google Scholar 

  36. M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, and A.K. Gupta, Titanium foam through powder metallurgy route using acicular urea particles as space holder, Mater. Lett., 65(2011), No. 21–22, p. 3199.

    Article  CAS  Google Scholar 

  37. G. Adamek and J. Jakubowicz, Tantalum foam made with sucrose as a space holder, Int. J. Refract. Met. Hard Mater., 53(2015), p. 51.

    Article  CAS  Google Scholar 

  38. A. Mansourighasri, N. Muhamad, and A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J. Mater. Process. Technol., 212(2012), No. 1, p. 83.

    Article  CAS  Google Scholar 

  39. E.E. Asik and Ş. Bor, Fatigue behavior of Ti-6Al-4V foams processed by magnesium space holder technique, Mater. Sci. Eng. A, 621(2015), p. 157.

    Article  CAS  Google Scholar 

  40. T. Aydoğmuş, E.T. Bor, and Ş. Bor, Phase transformation behavior of porous TiNi alloys produced by powder metallurgy using magnesium as a space holder, Metall. Mater. Trans. A, 42(2011), No. 9, p. 2547.

    Article  CAS  Google Scholar 

  41. T. Shimizu, K. Matsuzaki, H. Nagai, and N. Kanetake, Production of high porosity metal foams using EPS beads as space holders, Mater. Sci. Eng. A, 558(2012), p. 343.

    Article  CAS  Google Scholar 

  42. J. Kadkhodapour, H. Montazerian, M. Samadi, S. Schmauder, and A. Abouei Mehrizi, Plastic deformation and compressive mechanical properties of hollow sphere aluminum foams produced by space holder technique, Mater. Des., 83(2015), p. 352.

    Article  CAS  Google Scholar 

  43. N. Bekoz and E. Oktay, Effect of heat treatment on mechanical properties of low alloy steel foams, Mater. Des., 51(2013), p. 212.

    Article  CAS  Google Scholar 

  44. N. Bekoz and E. Oktay, High temperature mechanical properties of low alloy steel foams produced by powder metallurgy, Mater. Des., 53(2014), p. 482.

    Article  CAS  Google Scholar 

  45. I. Mutlu and E. Oktay, Processing and properties of highly porous 17-4 PH stainless steel, Powder Metall. Met. Ceram., 50(2011), No. 1–2, p. 73.

    Article  CAS  Google Scholar 

  46. M. Mirzaei and M.H. Paydar, Fabrication and characterization of core-shell density-graded 316L stainless steel porous structure, J. Mater. Eng. Perform., 28(2019), No. 1, p. 221.

    Article  CAS  Google Scholar 

  47. Q. Pang, Z.L. Hu, and G.R. Wang, Effect of Ce content on mechanical properties of Ce/Cr coated open-cell Ni-Cr-Fe alloy foams, Trans. Nonferrous Met. Soc. China, 27(2017), No. 5, p. 1052.

    Article  CAS  Google Scholar 

  48. M. Mirzaei and M.H. Paydar, A novel process for manufacturing porous 316L stainless steel with uniform pore distribution, Mater. Des., 121(2017), p. 442.

    Article  CAS  Google Scholar 

  49. N. Bekoz and E. Oktay, Effects of carbamide shape and content on processing and properties of steel foams, J. Mater. Process. Technol., 212(2012), No. 10, p. 2109.

    Article  CAS  Google Scholar 

  50. H.Ö. Gulsoy and R.M. German, Sintered foams from precipitation hardened stainless steel powder, Powder Metall., 51(2008), No. 4, p. 350.

    Article  CAS  Google Scholar 

  51. H. Sazegaran and M. Hojati, Effects of copper content on microstructure and mechanical properties of open-cell steel foams, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 588.

    Article  CAS  Google Scholar 

  52. H. Okamoto, The Fe-P (iron-phosphorus) system, Bull. Alloy Phase Diagram, 11(1990), No. 4, p. 404.

    Article  CAS  Google Scholar 

  53. Y. Yin, Z.M. Li, and S.M. Zhai, The phase diagram of the Fe-P binary system at 3 GPa and implications for phosphorus in the lunar core, Geochim. Cosmochim. Acta, 254(2019), p. 54.

    Article  CAS  Google Scholar 

  54. H. Sazegaran, A. Feizi, and M. Hojati, Effect of Cr contents on the porosity percentage, microstructure, and mechanical properties of steel foams manufactured by powder metallurgy, Trans. Indian Inst. Met., 72(2019), No. 10, p. 2819.

    Article  CAS  Google Scholar 

  55. A.A.S. Abosbaia, S.C. Mitchell, M. Youseffi, and A.S. Wronski, Liquid phase sintering, heat treatment and properties of ultrahigh carbon steel, Powder Metall., 54(2011), No. 5, p. 592.

    Article  CAS  Google Scholar 

  56. M. Turkmen, Effect of carbon content on microstructure and mechanical properties of powder metallurgy steels, Powder Metall. Met. Ceram., 55(2016), No. 3–4, p. 164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Sazegaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazegaran, H., Nezhad, S.M.M. Cell morphology, porosity, microstructure and mechanical properties of porous Fe-C-P alloys. Int J Miner Metall Mater 28, 257–265 (2021). https://doi.org/10.1007/s12613-020-1995-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1995-2

Keywords

Navigation