Skip to main content
Log in

Specific protein 1 inhibitor mithramycin A protects cardiomyocytes from myocardial infarction via interacting with PARP

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Specific protein 1 (SP1) might act as a critical transcription regulator in myocardial infarction (MI), but little evidence about its function in regulating cardiac apoptosis, a major cause of MI development, has been revealed. This study tried to investigate the role of SP1 in MI and its interaction with poly-ADP-ribose polymerase (PARP)-1 by using SP1 inhibitor, mithramycin A (mithA). Primary mouse cardiomyocytes and commercial mouse cardiomyocytes were subjected to mithA treatment under hypoxia conditions, while cell viability, Nix promoter activity, and its expression were detected correspondingly. PARP overexpression and knockdown were conducted, respectively, in mithA-treated and SP1-overexpressing cells. Co-immunoprecipitation was used to verify the interaction between PARP and SP1. For in vivo experiments, mithA administration was performed after the injections of adenovirus for PARP overexpression, and then, MI introduction was carried out. Infarct size and lactate dehydrogenase level were measured to assess MI injury. SP1 inhibitor mithA attenuated hypoxia-induced decrease of cell viability and Nix transcriptional activation, which could be inhibited by PARP overexpression. Knockdown of PARP prevented SP1-induced transcription of Nix and cell viability change, and PARP showed direct interaction with SP1. Furthermore, mithA administration reduced MI injuries, while PARP overexpression could suppress the improvement. The cardioprotective role of SP1 inhibitor mithA was demonstrated here expanding the role of SP1 in MI development involving hypoxia-induced cardiac apoptosis. Moreover, PARP acted as a transcriptional coactivator in Nix transcription involving its interaction with SP1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure. 1.
Figure. 2.
Figure. 3.
Figure. 4.

Similar content being viewed by others

References

  • Boisguerin P, Giorgi JM, Barrère-Lemaire S (2013) CPP-conjugated anti-apoptotic peptides as therapeutic tools of ischemia-reperfusion injuries. Curr Pharm Des 19:2970–2978

    CAS  PubMed  Google Scholar 

  • Brown JS, O'Carrigan B, Jackson SP, Yap TA (2017) Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 7:20–37

    CAS  PubMed  Google Scholar 

  • Cheng M, An S, Li J (2017) Identifying key genes associated with acute myocardial infarction. Medicine (Baltimore) 96:e7741

    CAS  Google Scholar 

  • Dai C, Chen X, Li J, Comish P, Kang R, Tang D (2020) Transcription factors in ferroptotic cell death. Cancer Gene Ther 27:645–656

    CAS  PubMed  Google Scholar 

  • Dorn GW 2nd, Kirshenbaum LA (2008) Cardiac reanimation: targeting cardiomyocyte death by BNIP3 and NIX/BNIP3L. Oncogene 27(Suppl 1):S158–S167

    CAS  PubMed  Google Scholar 

  • Duverger V, Murphy AM, Sheehan D, England K, Cotter TG, Hayes I, Murphy FJ (2004) The anticancer drug mithramycin A sensitises tumour cells to apoptosis induced by tumour necrosis factor (TNF). Br J Cancer 90:2025–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gálvez AS, Brunskill EW, Marreez Y, Benner BJ, Regula KM, Kirschenbaum LA, Dorn GW 2nd (2006) Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem 281:1442–1448

    PubMed  Google Scholar 

  • Guo C, Zhao W, Bao XF (2019) LncRNA NNT-AS1 affect progesterone resistance by regulating miR-542-3p/survivin axis in endometrial cancer. Clin Surg Res Commun 3:25–35

    Google Scholar 

  • Hepp MI, Escobar D, Farkas C, Hermosilla VE, Álvarez C, Amigo R, Gutiérrez JL, Castro AF, Pincheira R (2018) A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells. Biochim Biophys Acta Gene Regul Mech 1861:623–636. https://doi.org/10.1016/j.bbagrm.2018.05.002

    Article  CAS  Google Scholar 

  • Hu Y, Zhang C, Zhu H, Wang S, Zhou Y, Zhao J, Xia Y, Li D (2020) Luteolin modulates SERCA2a via Sp1 upregulation to attenuate myocardial ischemia/reperfusion injury in mice. Sci Rep 10:15407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaipersad AS, Lip GY, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63:1–11

    CAS  PubMed  Google Scholar 

  • Kannan P, Yu Y, Wankhade S, Tainsky MA (1999) PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation. Nucleic Acids Res 27:866–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kavurma MM, Bobryshev Y, Khachigian LM (2002) Ets-1 positively regulates Fas ligand transcription via cooperative interactions with Sp1. J Biol Chem 277:36244–36252

    CAS  PubMed  Google Scholar 

  • Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548

    PubMed  Google Scholar 

  • Li R, Geng HH, Xiao J, Qin XT, Wang F, Xing JH, Xia YF, Mao Y, Liang JW, Ji XP (2016) miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep 6:29082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim M, Wang W, Liang L, Han ZB, Li Z, Geng J, Zhao M, Jia H, Feng J, Wei Z, Song B, Zhang J, Li J, Liu T, Wang F, Li T, Li J, Fang Y, Gao J, Han Z (2018) Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther 9:129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wang G, Yakovlev AG (2002) Identification and functional analysis of the rat caspase-3 gene promoter. J Biol Chem 277:8273–8278

    CAS  PubMed  Google Scholar 

  • Liu X, Liu T, Hu L, Jiang T, Liu H, Wang Y, Lei Y, Zhu J, Bu Y (2020) Identification and characterization of the promoter of cancer-related gene LOXL2. Exp Cell Res 387:111786

    CAS  PubMed  Google Scholar 

  • Long Y, Wang L, Li Z (2020) SP1-induced SNHG14 aggravates hypertrophic response in in vitro model of cardiac hypertrophy via up-regulation of PCDH17. J Cell Mol Med 24:7115–7126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Liang H, Chen J, Xu Y, Chen Y, Xu L, Yun L, Liu J, Yang H, Liu L, Peng J, Liu Z, Tang L, Chen W, Tang H (2017) Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway. Environ Toxicol 32:2163–2171

    CAS  PubMed  Google Scholar 

  • Patel RS, Kamil SH, Bachu R, Adikey A, Ravat V, Kaur M, Tankersley WE, Goyal H (2020) Marijuana use and acute myocardial infarction: a systematic review of published cases in the literature. Trends Cardiovasc Med 30:298–307

    PubMed  Google Scholar 

  • Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12:698–714

    CAS  PubMed  Google Scholar 

  • Roman MG, Flores LC, Cunningham GM, Cheng C, Dube S, Allen C, Remmen HV, Bai Y, Saunders TL, Ikeno Y (2020) Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice. Aging Pathobiol Ther 2:20–31

    Google Scholar 

  • Schiewer MJ, Mandigo AC, Gordon N, Huang F, Gaur S, de Leeuw R, Zhao SG, Evans J, Han S, Parsons T, Birbe R, McCue P, McNair C, Chand SN, Cendon-Florez Y, Gallagher P, McCann JJ, Poudel Neupane N, Shafi AA, Dylgjeri E, Brand LJ, Visakorpi T, Raj GV, Lallas CD, Trabulsi EJ, Gomella LG, Dicker AP, Kelly WK, Leiby BE, Knudsen B, Feng FY, Knudsen KE (2018) PARP-1 regulates DNA repair factor availability. EMBO Mol Med 10:e8816

    PubMed  PubMed Central  Google Scholar 

  • Smit M, Coetzee AR, Lochner A (2020) The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth 34:2501–2512

    PubMed  Google Scholar 

  • Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, Wang JX, Li PF (2017) The role of MicroRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci 18:745

    PubMed Central  Google Scholar 

  • Syed M, Ball JP, Mathis KW, Hall ME, Ryan MJ, Rothenberg ME, Yanes Cardozo LL, Romero DG (2018) MicroRNA-21 ablation exacerbates aldosterone-mediated cardiac injury, remodeling, and dysfunction. Am J Physiol Endocrinol Metab 315:E1154–e1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szepes M, Janicsek Z, Benkő Z, Cselenyák A, Kiss L (2013) Pretreatment of therapeutic cells with poly(ADP-ribose) polymerase inhibitor enhances their efficacy in an in vitro model of cell-based therapy in myocardial infarct. Int J Mol Med 31:26–32

    CAS  PubMed  Google Scholar 

  • Tan NY, Khachigian LM (2009) Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol 29:2483–2488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Gao L, Zimmerman MC, Zucker IH (2018) Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Phys Heart Circ Phys 314:H928–h939

    CAS  Google Scholar 

  • Tidyman WE, Sehnert AJ, Huq A, Agard J, Deegan F, Stainier DY, Ordahl CP (2003) In vivo regulation of the chicken cardiac troponin T gene promoter in zebrafish embryos. Dev Dyn 227:484–496

    CAS  PubMed  Google Scholar 

  • Wang L, Yang J, Wang H et al (2020) Highly expressed ribosomal protein L34 predicts poor prognosis in acute myeloid leukemia and could be a potential therapy target. Aging Pathobiol Ther 2:32–37

    Google Scholar 

  • Wei C, Zhang W, Zhou Q, Zhao C, Du Y, Yan Q, Li Z, Miao J (2016) Mithramycin A alleviates cognitive deficits and reduces neuropathology in a transgenic mouse model of Alzheimer's disease. Neurochem Res 41:1924–1938

    CAS  PubMed  Google Scholar 

  • Wu X, Dong Z, Wang CJ, Barlow LJ, Fako V, Serrano MA, Zou Y, Liu JY, Zhang JT (2016) FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1. Proc Natl Acad Sci U S A 113:E6965–e6973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaniolo K, Rufiange A, Leclerc S, Desnoyers S, Guérin SL (2005) Regulation of the poly(ADP-ribose) polymerase-1 gene expression by the transcription factors Sp1 and Sp3 is under the influence of cell density in primary cultured cells. Biochem J 389:423–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaniolo K, Desnoyers S, Leclerc S, Guérin SL (2007) Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1. BMC Mol Biol 8:96

    PubMed  PubMed Central  Google Scholar 

  • Zhang G, Shi H, Wang L, Zhou M, Wang Z, Liu X, Cheng L, Li W, Li X (2015) MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction. PLoS One 10:e0135339

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16:939–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang YM (2019) Expression and function of lncRNA ANRIL in a mouse model of acute myocardial infarction combined with type 2 diabetes mellitus. J Chin Med Assoc 82:685–692

    PubMed  Google Scholar 

  • Zhang X, Li R, Qin X, Wang L, Xiao J, Song Y, Sheng X, Guo M, Ji X (2018) Sp1 plays an important role in vascular calcification both in vivo and in vitro. J Am Heart Assoc 7:E007555

    PubMed  PubMed Central  Google Scholar 

  • Zhao N, Yu H, Yu H, Sun M, Zhang Y, Xu M, Gao W (2013) MiRNA-711-SP1-collagen-I pathway is involved in the anti-fibrotic effect of pioglitazone in myocardial infarction. Sci China Life Sci 56:431–439

    CAS  PubMed  Google Scholar 

  • Zhou S, Sun W, Zhang Z, Zheng Y (2014) The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Med Cell Longev 2014:260429

    Google Scholar 

Download references

Funding

This study was supported by the Nantong Applied Research Project (Grant No. MS12018039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhuan Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Su, Y., Huang, R. et al. Specific protein 1 inhibitor mithramycin A protects cardiomyocytes from myocardial infarction via interacting with PARP. In Vitro Cell.Dev.Biol.-Animal 57, 315–323 (2021). https://doi.org/10.1007/s11626-021-00543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-021-00543-z

Keywords

Navigation