Skip to main content
Log in

Asymptotic flatness and nonflat solutions in the critical \(2+1\) Hořava theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Hořava theory in \(2+1\) dimensions can be formulated at a critical point in the space of coupling constants where it has no local degrees of freedom. This suggests that this critical case could share many features with \(2+1\) general relativity, in particular its large-distance effective action that is of second order in derivatives. To deepen on this relationship, we study the asymptotically flat solutions of the effective action. We take the general definition of asymptotic flatness from \(2+1\) general relativity, where an asymptotically flat region with a nonfixed conical angle is approached. We show that a class of regular asymptotically flat solutions are totally flat. The class is characterized by having nonnegative energy (when the coupling constant of the Ricci scalar is positive). We present a detailed canonical analysis on the effective action showing that the dynamics of the theory forbids local degrees of freedom. Another similarity with \(2+1\) general relativity is the absence of a Newtonian force. In contrast to these results, we find evidence against the similarity with \(2+1\) general relativity: we find an exact nonflat solution of the same effective theory. This solution is out of the set of asymptotically flat solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bañados, M., Teitelboim, C., Zanelli, J.: The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hořava, P.: Quantum Gravity at a Lifshitz Point. Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hořava, P.: Membranes at quantum criticality. JHEP 03, 020 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Blas, D., Pujolas, O., Sibiryakov, S.: Consistent extension of Hořava gravity. Phys. Rev. Lett. 104, 181302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hořava, P., Melby-Thompson, C.M.: General covariance in quantum gravity at a Lifshitz Point. Phys. Rev. D 82, 064027 (2010)

    Article  ADS  Google Scholar 

  6. Zhu, T., Shu, F.W., Wu, Q., Wang, A.: General covariant Horava-Lifshitz gravity without projectability condition and its applications to cosmology. Phys. Rev. D 85, 044053 (2012)

    Article  ADS  Google Scholar 

  7. Bellorín, J., Restuccia, A., Sotomayor, A.: Consistent Hořava gravity without extra modes and equivalent to general relativity at the linearized level. Phys. Rev. D 87, 084020 (2013)

    Article  ADS  Google Scholar 

  8. Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. Blas, D., Pujolas, O., Sibiryakov, S.: Comment on ‘Strong coupling in extended Hořava-Lifshitz gravity’. Phys. Lett. B 688, 350 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jacobson, T.: Extended Hořava gravity and Einstein-aether theory. Phys. Rev. D 81 101502 (2010) Erratum: [Phys. Rev. D 82 129901 (2010)] [arXiv:1001.4823 [hep-th]]

  11. Jacobson, T.: Undoing the twist: The Hořava limit of Einstein-aether theory. Phys. Rev. D 89, 081501 (2014)

    Article  ADS  Google Scholar 

  12. Ashtekar, A., Varadarajan, M.: A Striking property of the gravitational Hamiltonian. Phys. Rev. D 50, 4944 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Deser, S., Jackiw, R., Hooft, G.: Three-dimensional Einstein Gravity: dynamics of flat space. Ann. Phys. 152, 220 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bellorín, J., Droguett, B.: Point-particle solution and the asymptotic flatness in 2+1D Hořava gravity. Phys. Rev. D 100, 064021 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Sotiriou, T.P., Visser, M., Weinfurtner, S.: Lower-dimensional Hořava-Lifshitz gravity. Phys. Rev. D 83, 124021 (2011)

    Article  ADS  Google Scholar 

  16. Park, M.I.: The rotating black hole in renormalizable quantum gravity: the three-dimensional Hořava gravity case. Phys. Lett. B 718, 1137 (2013)

    Article  ADS  Google Scholar 

  17. Shu, F.W., Lin, K., Wang, A., Wu, Q.: Lifshitz spacetimes, solitons, and generalized BTZ black holes in quantum gravity at a Lifshitz point. JHEP 04, 056 (2014)

    Article  ADS  Google Scholar 

  18. Sotiriou, T.P., Vega, I., Vernieri, D.: Rotating black holes in three-dimensional Hořava gravity. Phys. Rev. D 90, 044046 (2014)

    Article  ADS  Google Scholar 

  19. Basu, S., Bhattacharyya, J., Mattingly, D., Roberson, M.: Asymptotically Lifshitz spacetimes with universal horizons in \((1 + 2)\) dimensions. Phys. Rev. D 93, 064072 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Benedetti, D., Guarnieri, F.: One-loop renormalization in a toy model of Hořava-Lifshitz gravity. JHEP 03, 078 (2014)

    Article  ADS  Google Scholar 

  21. Barvinsky, A.O., Blas, D., Herrero-Valea, M., Sibiryakov, S.M., Steinwachs, C.F.: Renormalization of HoŘava gravity. Phys. Rev. D 93, 064022 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Griffin, T., Grosvenor, K.T., Melby-Thompson, C.M., Yan, Z.: Quantization of Hořava gravity in 2+1 dimensions. JHEP 1706, 004 (2017)

    Article  ADS  Google Scholar 

  23. Barvinsky, A.O., Blas, D., Herrero-Valea, M., Sibiryakov, S.M., Steinwachs, C.F.: Hořava Gravity is Asymptotically Free in \(2+1\) Dimensions. Phys. Rev. Lett. 119, 211301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bellorín, J., Droguett, B.: Quantization of the nonprojectable 2+1D Hořava theory: The second-class constraints. Phys. Rev. D 101, 084061 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hartong, J., Lei, Y., Obers, N.A.: Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity. Phys. Rev. D 94, 065027 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Donnelly, W., Jacobson, T.: Hamiltonian structure of Hořava gravity. Phys. Rev. D 84, 104019 (2011)

    Article  ADS  Google Scholar 

  27. Bellorín, J., Restuccia, A.: On the space of solutions of the Hořava theory at the kinetic-conformal point. Gen. Rel. Grav. 49, 132 (2017)

    Article  ADS  Google Scholar 

  28. Garfinkle, D., Jacobson, T.: A positive energy theorem for Einstein-aether and Hořava gravity. Phys. Rev. Lett. 107, 191102 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B. D. and C. B. are partially supported by the grants CONICYT PFCHA/DOCTO-RADO BECAS CHILE/2019 - 21190398 and 21190960 respectively. B. D.  is partially supported by the Universidad de Antofagasta grant PROYECTO ANT1756, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Bellorín.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Newtonian force

A Newtonian force

We may ask whether there is a place for a Newtonian force in this theory. The computations can be taken from Ref. [14], since the solution is the same for the critical \(\lambda = 1/2\) and noncritical \(\lambda \ne 1/2\) cases. Here we summarize the solution with the aim of showing explicitly the coupling between the critical Hořava gravity and the particle and how the Newtonian potential is lacked.

We couple the gravitational theory to a massive particle at rest. We assume that the dynamics of the particle is governed by an action of relativistic nature. Hence we assume that the action of the particle is proportional to the lenght of its worldline, embedded in a spacetime ambient. The ambient is taken from a solution of the Hořava theory. We choose the time coordinate t of the ambient foliation to parameterize the worldline of the particle. The mechanics of the particle is characterized by the embedding fields \(q^0 = q^0(t)\) and \(q^i = q^i(t)\), which define the position of the particle in the foliation. Thus, the combined system critical \(2+1\) Hořava gravity–point particle is given by the action

$$\begin{aligned} S = \frac{1}{2\kappa } \int dt d^2x \sqrt{g} N \left( K_{ij}K^{ij} - \frac{1}{2} K^2 + \beta R + \alpha a_k a^k \right) - m \int dt \sqrt{ L } \,, \qquad \end{aligned}$$
(A.1)

where

$$\begin{aligned} L = (N^{2} - N_{k}N^{k}) \left( {\dot{q}}^0 \right) ^2 - 2 N_k {\dot{q}}^0 {\dot{q}}^k - g_{kl} {\dot{q}}^k {\dot{q}}^l \,, \end{aligned}$$
(A.2)

m is the mass of the particle and \(\kappa \) is a coupling constant. L is the squared line element of the particle evaluated on the background of the ADM variables, and these variables are evaluated at the position of the particle in L. The field equations of the ADM variables are obtained by varying the action (A.1) with respect to them. We shown the resulting equations directly evaluated on the gauge \(N_i = 0\),

$$\begin{aligned}&K^{ij}K_{ij} - \frac{1}{2} K^{2} + \beta R + \alpha a_i a^i - 2 \alpha \frac{\nabla ^{2} N}{N} = 2 \kappa m \frac{ ({\dot{q}}^0)^2 N }{ \sqrt{gL} } \delta ^{(d)} (x^k - q^k) \,, \qquad \end{aligned}$$
(A.3)
$$\begin{aligned}&G^{ijkl} \nabla _{j} K_{kl} = - \frac{ \kappa m }{ \sqrt{gL} } {\dot{q}}^0 {\dot{q}}^i \delta ^{(d)} (x^m - q^m) \,, \end{aligned}$$
(A.4)
$$\begin{aligned}&\frac{1}{\sqrt{g}} \frac{\partial }{\partial t} \left( \sqrt{g} G^{ijkl} K_{kl} \right) + 2 N (K^i{}_k K^{jk} - \frac{1}{2} KK^{ij}) - \frac{1}{2} N g^{ij} G^{klmn} K_{kl} K_{mn} \nonumber \\&\qquad - \beta \left( \nabla ^{ij} N - g^{ij} \nabla ^{2}N \right) + \frac{\alpha }{N} \left( \nabla ^i N \nabla ^j N - \frac{1}{2} g^{ij} \nabla _{k} N \nabla ^{k} N \right) \nonumber \\&\quad = \frac{ \kappa m}{ \sqrt{gL}} {\dot{q}}^{i} {\dot{q}}^{j} \delta ^{(d)} (x^m - q^m) \,. \end{aligned}$$
(A.5)

In the \(N_i = 0\) gauge we have that \(K_{ij} = {\dot{g}}_{ij}/2N\). The equations of motion corresponding to the variations of the coordinates of the particle are

$$\begin{aligned} {q}^i{}'' + \Gamma ^{i}_{kl} {q}^k{}' {q}^l{}' + \frac{1}{2} \partial ^i N^2 ( {q}^0{}' )^2= & {} 0 \,, \end{aligned}$$
(A.6)
$$\begin{aligned} \frac{2}{\sqrt{L}} \frac{d}{d t} N^{2} {q}^{0}{}' + \partial _0 N^2 ({q}^0{}')^2 - \partial _{0} g_{ij} {q}^{i}{}' {q}^{j}{}'= & {} 0 \,, \end{aligned}$$
(A.7)

where the prime means

$$\begin{aligned} {\psi }' \equiv \frac{1}{\sqrt{L}}\frac{\partial \psi }{\partial t} \,. \end{aligned}$$
(A.8)

In the equations of motion (A.3)–(A.7) we consider that the particle and its gravitational field (the N and \(g_{ij}\) fields) are static. A suitable choice for the location of the particle is \(q^0 = t\), \(q^i = 0\), which means that the particle remains at the origin. Under these settings, Eq. (A.5) acquires exactly the same form displayed in (3.18) for the vacuum theory. Its trace gives again the condition of harmonicity on N (3.19). Imposing the asymptotic condition (2.5)–(2.6), which is appropiated for the Newtonian case, we have again that the only solution is \(N = 1\) everywhere. Since a nonconstant \(-N^2\) would be the analogue of the Newtonian potential, we have that there is no Newtonian force in this theory. Hence, the situation is the same as in \(2+1\) general relativity. Indeed, the rest of the analysis for solving the remaining field equations is parallel to general relativity. Equation (A.4) is automatically solved. Particle’s equations of motion, given in Eqs. (A.6)–(A.7), are automatically solved considering that \(N=1\). The remaining is the analogue of the time-time component of the Einstein equations, Eq. (A.3). It takes the form

$$\begin{aligned} \sqrt{g} R = \frac{2 \kappa m }{\beta } \delta ^{(2)}(x^i) \,. \end{aligned}$$
(A.9)

This equation was solved in [13]. Its solution, in polar coordinates, is

$$\begin{aligned} ds^{2} = r^{-\frac{ \kappa m}{\pi \beta }} ( dr^2 + r^2 d\theta ^2 ) \,. \end{aligned}$$
(A.10)

The generic geometry is a flat cone (other geometries are possible in the space of parameters [12, 13]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellorín, J., Bórquez, C. & Droguett, B. Asymptotic flatness and nonflat solutions in the critical \(2+1\) Hořava theory. Gen Relativ Gravit 53, 19 (2021). https://doi.org/10.1007/s10714-021-02793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02793-4

Keywords

Navigation