Skip to main content

Advertisement

Log in

Identification of iron and sulfate release processes during riverbank filtration using chemical mass balance modeling

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Various hydrogeochemical processes can modify the quality of river water during riverbank filtration (RBF). Identifying the subsurface processes responsible for the bank-filtered water quality is challenging, but essential for predicting water quality changes and determining the necessity of post-treatment. However, no systematic approach for this has been proposed yet. In this study, the subsurface hydrogeochemical processes that caused the high concentrations of total iron (Fe) and sulfate (SO42−) in the bank-filtered water were investigated at a pilot-scale RBF site in South Korea. For this purpose, water quality variations were monitored in both the extraction well and the adjacent river over five months. The volumetric mixing ratio between the river water and the native groundwater in the RBF well was calculated to understand the effect of mixing on the quality of water from the well and to assess the potential contribution of subsurface reactions to water quality changes. To identify the subsurface processes responsible for the evolution of Fe and SO42− during RBF, an inverse modeling based on the chemical mass balance was conducted using the water quality data and the calculated volumetric mixing ratio. The modeling results suggest that pyrite oxidation by abundant O2 present in an unsaturated zone could be a primary process explaining the evolution of total Fe and SO42− during RBF at the study site. The presence of pyrite in the aquifer was indirectly supported by iron sulfate hydroxide (Fe(SO4)(OH)) detected in oxidized aquifer sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amos, R. T., & Mayer, K. U. (2006). Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling. Journal of contaminant hydrology, 87(1–2), 123–154.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77(2–3), 109–131.

    Article  CAS  Google Scholar 

  • Antoniou, E. A., Van Breukelen, B. M., Putters, B., & Stuyfzand, P. J. (2012). Hydrogeochemical patterns, processes and mass transfers during aquifer storage and recovery (ASR) in an anoxic sandy aquifer. Applied Geochemistry, 27(12), 2435–2452.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Bartak, R., Macheleidt, W., & Grischek, T. (2017). Controlling the formation of the reaction zone around an injection well during subsurface iron removal. Water, 9(2), 87.

    Article  CAS  Google Scholar 

  • Bénézeth, P., Dandurand, J. L., & Harrichoury, J. C. (2009). Solubility product of siderite (FeCO3) as a function of temperature (25–250 C). Chemical Geology, 265(1–2), 3–12.

    Article  CAS  Google Scholar 

  • Berner, R. A. (1984). Sedimentary pyrite formation: an update. Geochimica et cosmochimica Acta, 48(4), 605–615.

    Article  CAS  Google Scholar 

  • Bertelkamp, C., Reungoat, J., Cornelissen, E. R., Singhal, N., Reynisson, J., Cabo, A. J., et al. (2014). Sorption and biodegradation of organic micropollutants during river bank filtration: A laboratory column study. Water Research, 52, 231–241.

    Article  CAS  Google Scholar 

  • Chiang, W. H., & Kinzelbach, W. (1994). PMPATH, an advective transport model for processing modflow and modflow. Germany: Geol Surv Hambg.

    Google Scholar 

  • Dash, R. R., Mehrotra, I., Kumar, P., & Grischek, T. (2008). Lake bank filtration at Nainital, India: Water-quality evaluation. Hydrogeology Journal, 16(6), 1089–1099.

    Article  CAS  Google Scholar 

  • Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233.

    Article  CAS  Google Scholar 

  • Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., & Aggarwal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research, 38(9), 12–21.

    Article  CAS  Google Scholar 

  • Duckworth, O. W., & Martin, S. T. (2004). Role of molecular oxygen in the dissolution of siderite and rhodochrosite1. Geochimica et Cosmochimica Acta, 68(3), 607–621.

    Article  CAS  Google Scholar 

  • Engesgaard, P., & Kipp, K. L. (1992). A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite. Water Resources Research, 28(10), 2829–2843.

    Article  CAS  Google Scholar 

  • Farnsworth, C. E., & Hering, J. G. (2011). Inorganic geochemistry and redox dynamics in bank filtration settings. Environmental Science & Technology, 45(12), 5079–5087.

    Article  CAS  Google Scholar 

  • Faure, G. (1998). Principles and applications of geochemistry: a comprehensive textbook for geology students. New Jersey: Prentice Hall.

    Google Scholar 

  • Fry, V. A., Selker, J. S., & Gorelick, S. M. (1997). Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation. Water Resources Research, 33(12), 2687–2696.

    Article  CAS  Google Scholar 

  • Ghodeif, K., Grischek, T., Bartak, R., Wahaab, R., & Herlitzius, J. (2016). Potential of river bank filtration (RBF) in Egypt. Environmental Earth Sciences, 75(8), 671.

    Article  CAS  Google Scholar 

  • Ghodeif, K., Paufler, S., Grischek, T., Wahaab, R., Souaya, E., Bakr, M., & Abogabal, A. (2018). Riverbank filtration in Cairo, Egypt—part I: installation of a new riverbank filtration site and first monitoring results. Environmental Earth Sciences, 77(7), 270.

    Article  CAS  Google Scholar 

  • Grischek, T., & Paufler, S. (2017). Prediction of iron release during riverbank filtration. Water, 9(5), 317.

    Article  CAS  Google Scholar 

  • Grünheid, S., Amy, G., & Jekel, M. (2005). Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Research, 39(14), 3219–3228.

    Article  CAS  Google Scholar 

  • Heberer, T., Massmann, G., Fanck, B., Taute, T., & Dünnbier, U. (2008). Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere, 73(4), 451–460.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. USA: Department of the Interior US Geological Survey.

    Google Scholar 

  • Hesse, P. R. (1971). A textbook of soil chemical analysis (No. 631.41 H4).

  • Hu, B., Teng, Y., Zhai, Y., Zuo, R., Li, J., & Chen, H. (2016). Riverbank filtration in China: A review and perspective. Journal of Hydrology, 541, 914–927.

    Article  CAS  Google Scholar 

  • Jalali, M. (2009). Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. Environmental Geology, 56(7), 1479–1488.

    Article  CAS  Google Scholar 

  • Jensen, D. L., Boddum, J. K., Tjell, J. C., & Christensen, T. H. (2002). The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments. Applied Geochemistry, 17(4), 503–511.

    Article  CAS  Google Scholar 

  • Juncher Jørgensen, C., Jacobsen, O. S., Elberling, B., & Aamand, J. (2009). Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environmental Science & Technology, 43(13), 4851–4857.

    Article  CAS  Google Scholar 

  • Kang, P. K., Bresciani, E., An, S., & Lee, S. (2019). Potential impact of pore-scale incomplete mixing on biodegradation in aquifers: From batch experiment to field-scale modeling. Advances in Water Resources, 123, 1–11.

    Article  CAS  Google Scholar 

  • Kedziorek, M. A., & Bourg, A. C. (2009). Electron trapping capacity of dissolved oxygen and nitrate to evaluate Mn and Fe reductive dissolution in alluvial aquifers during riverbank filtration. Journal of Hydrology, 365(1–2), 74–78.

    Article  CAS  Google Scholar 

  • Kim, K. H., Heiss, J. W., Michael, H. A., Cai, W. J., Laattoe, T., Post, V. E., & Ullman, W. J. (2017). Spatial patterns of groundwater biogeochemical reactivity in an intertidal beach aquifer. Journal of Geophysical Research: Biogeosciences, 122(10), 2548–2562.

    Article  CAS  Google Scholar 

  • Ko, M. S., Cho, K., Jeong, D., & Lee, S. (2016). Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge. Science of the Total Environment, 545, 486–492.

    Article  CAS  Google Scholar 

  • Kohfahl, C., Massmann, G., & Pekdeger, A. (2009). Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin Germany. Hydrogeology Journal, 17(3), 571.

    Article  CAS  Google Scholar 

  • Komnitsas, K., Xenidis, A., & Adam, K. (1995). Oxidation of pyrite and arsenopyrite in sulphidic spoils in Lavrion. Minerals Engineering, 8(12), 1443–1454.

    Article  CAS  Google Scholar 

  • Lee, E., Hyun, Y., Lee, K. K., & Shin, J. (2012). Hydraulic analysis of a radial collector well for riverbank filtration near Nakdong River. South Korea. Hydrogeology Journal, 20(3), 575–589.

    Article  Google Scholar 

  • Lee, J. H., Hamm, S. Y., Cheong, J. Y., Kim, H. S., Ko, E. J., Lee, K. S., & Lee, S. I. (2009). Characterizing riverbank-filtered water and river water qualities at a site in the lower Nakdong River basin, Republic of Korea. Journal of Hydrology, 376(1–2), 209–220.

    Article  CAS  Google Scholar 

  • Lee, W., Bresciani, E., An, S., Wallis, I., Post, V., Lee, S., & Kang, P. K. (2020). Spatiotemporal evolution of iron and sulfate concentrations during riverbank filtration: Field observations and reactive transport modeling. Journal of Contaminant Hydrology, 10, 3697.

    Google Scholar 

  • Lorenzen, G., Sprenger, C., Taute, T., Pekdeger, A., Mittal, A., & Massmann, G. (2010). Assessment of the potential for bank filtration in a water-stressed megacity (Delhi, India). Environmental Earth Sciences, 61(7), 1419–1434.

    Article  CAS  Google Scholar 

  • Maeng, S. K., Sharma, S. K., Lekkerkerker-Teunissen, K., & Amy, G. L. (2011). Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: a review. Water Research, 45(10), 3015–3033.

    Article  CAS  Google Scholar 

  • Majzlan, J., Dachs, E., Benisek, A., Plášil, J., & Sejkora, J. (2018). Thermodynamics, crystal chemistry and structural complexity of the Fe (SO4)(OH)(H2O) x phases: Fe (SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite and fibroferrite. European Journal of Mineralogy, 30(2), 259–275.

    Article  CAS  Google Scholar 

  • Massmann, G., Nogeitzig, A., Taute, T., & Pekdeger, A. (2008). Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environmental Geology, 54(1), 53–65.

    Article  CAS  Google Scholar 

  • Massmann, G., Pekdeger, A., & Merz, C. (2004). Redox processes in the Oderbruch polder groundwater flow system in Germany. Applied Geochemistry, 19(6), 863–886.

    Article  CAS  Google Scholar 

  • Moses, C. O., & Herman, J. S. (1991). Pyrite oxidation at circumneutral pH. Geochimica et Cosmochimica Acta, 55(2), 471–482.

    Article  CAS  Google Scholar 

  • Olin Neal, C. (2001). Alkalinity measurements within natural waters: towards a standardised approach. Science of the Total Environment, 265(1–3), 99–113.

    Article  Google Scholar 

  • Othman, S. Z., Adlan, M. N., & Selamat, M. R. (2015). A study on the potential of riverbank filtration for the removal of color, iron, turbidity and E coli in Sungai Perak, Kota Lama Kiri, Kuala Kangsar, Perak, Malaysia. Jurnal Teknologi, 74(11), 83–91.

    Article  Google Scholar 

  • Paufler, S., Grischek, T., Bartak, R., Ghodeif, K., Wahaab, R., & Boernick, H. (2018). Riverbank filtration in Cairo, Egypt: part II—detailed investigation of a new riverbank filtration site with a focus on manganese. Environmental Earth Sciences, 77(8), 318.

    Article  CAS  Google Scholar 

  • Pauss, A., Roza, A., Ledrut, M. J., Naveau, H., & Nyns, E. J. (1990). Bicarbonate determination in complex acid-base solutions by a back-titration method. Environmental technology, 11(5), 469–476.

    Article  CAS  Google Scholar 

  • Ray, C. (Ed.). (2002). Riverbank filtration: understanding contaminant biogeochemistry and pathogen removal (Vol. 14). Springer Science & Business Media.

  • Ray, C. (2008). Worldwide potential of riverbank filtration. Clean Technologies and Environmental Policy, 10(3), 223–225.

    Article  Google Scholar 

  • Ray, C., Grischek, T., Schubert, J., Wang, J. Z., & Speth, T. F. (2002). A perspective of riverbank filtration. Journal-American Water Works Association, 94(4), 149–160.

    Article  CAS  Google Scholar 

  • Rickard, D. T. (1975). Kinetics and mechanism of pyrite formation at low temperatures. American Journal of Science, 275(6), 636–652.

    Article  CAS  Google Scholar 

  • Rust, G. W. (1935). Colloidal primary copper ores at Cornwall Mines, southeastern Missouri. The Journal of Geology, 43(4), 398–426.

    Article  CAS  Google Scholar 

  • Sawlowicz, Z. (1993). Pyrite framboids and their development: A new conceptual mechanism. Geologische Rundschau, 82(1), 148–156.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Giger, W., Hoehn, E., & Schneider, J. K. (1983). Behavior of organic compounds during infiltration of river water to groundwater. Field studies. Environmental science & technology, 17(8), 472–479.

    Article  CAS  Google Scholar 

  • Sprenger, C., Hartog, N., Hernández, M., Vilanova, E., Grützmacher, G., Scheibler, F., & Hannappel, S. (2017). Inventory of managed aquifer recharge sites in Europe: Historical development, current situation and perspectives. Hydrogeology Journal, 25(6), 1909–1922.

    Article  Google Scholar 

  • Sprenger, C., Lorenzen, G., Hülshoff, I., Grützmacher, G., Ronghang, M., & Pekdeger, A. (2011). Vulnerability of bank filtration systems to climate change. Science of the Total Environment, 409(4), 655–663.

    Article  CAS  Google Scholar 

  • Stuyfzand, P. J. (1989). Hydrology and water quality aspects of Rhine bank ground water in The Netherlands. Journal of Hydrology, 106, 341–363.

    Article  CAS  Google Scholar 

  • Stuyfzand, P. J. (1998). Quality changes upon injection into anoxic aquifers in the Netherlands: Evaluation of 11 experiments. In: Artificial Recharge Groundwater (pp. 283–291), Balkema, Rotterdam, The Netherlands.

  • Stuyfzand, P. J. (2011). Hydrogeochemical processes during riverbank filtration and artificial recharge of polluted surface waters: zonation, identification and quantification. In: Riverbank Filtration for Water Security in Desert Countries (pp. 97–128), Springer, Dordrecht, The Netherlands.

  • Stuyfzand, P. J., Juhàsz-Holterman, M. H., & de Lange, W. J. (2006a). Riverbank filtration in the Netherlands: well fields, clogging and geochemical reactions. In: Riverbank Filtration Hydrology (pp. 119–153), Springer, Dordrecht, The Netherlands.

  • Stuyfzand, P. J., & Raat, K. J. (2010). Benefits and hurdles of using brackish groundwater as a drinking water source in the Netherlands. Hydrogeology Journal, 18(1), 117–130.

    Article  CAS  Google Scholar 

  • Stuyfzand, P. J., & Stuurman, R. J. (2006, September). Origin, distribution and chemical mass balances of non-anthropogenic, brackish and (hyper) saline groundwaters in the Netherlands. In Proc. 1st SWIM-SWICA Joint Saltwater Intrusion Conference, Cagliari, Italy (pp. 151–164).

  • Wallis, I., Prommer, H., Berg, M., Siade, A. J., Sun, J., & Kipfer, R. (2020). The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 13(4), 288–295.

    Article  CAS  Google Scholar 

  • Walter, A. L., Frind, E. O., Blowes, D. W., Ptacek, C. J., & Molson, J. W. (1994). Modeling of multicomponent reactive transport in groundwater: 2 Metal mobility in aquifers impacted by acidic mine tailings discharge. Water Resources Research, 30(11), 3149–3158.

    Article  CAS  Google Scholar 

  • Wilkin, R. T., & Barnes, H. L. (1997). Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2), 323–339.

    Article  CAS  Google Scholar 

  • Williams, M. D., & Oostrom, M. (2000). Oxygenation of anoxic water in a fluctuating water table system: An experimental and numerical study. Journal of Hydrology, 230(1–2), 70–85.

    Article  CAS  Google Scholar 

  • Xie, X., Wang, Y., Li, J., Yu, Q., Wu, Y., Su, C., & Duan, M. (2015). Effect of irrigation on Fe (III)–SO42− redox cycling and arsenic mobilization in shallow groundwater from the Datong basin, China: Evidence from hydrochemical monitoring and modeling. Journal of Hydrology, 523, 128–138.

    Article  CAS  Google Scholar 

  • Zhang, Y. C., Slomp, C. P., Broers, H. P., Passier, H. F., & Van Cappellen, P. (2009). Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochimica et Cosmochimica Acta, 73(22), 6716–6726.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge support from the Future Research Program (2E30510) funded by the Korea Institute of Science and Technology (KIST) and the Korea Environmental Industry & Technology Institute (KEITI) through the Subsurface Environment Management (SEM) Project (2018002440006) funded by the Korea Ministry of Environment (MOE). PKK also acknowledges the College of Science & Engineering at the University of Minnesota and the George and Orpha Gibson Endowment for its generous support of Hydrogeology and the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

Author information

Authors and Affiliations

Authors

Contributions

Seongnam An was involved in field monitoring, REACTION + modeling, writing—original draft. Peter K. Kang helped in writing—review and editing. Pieter J. Stuyfzand contributed to review and comment. Woonghee Lee was involved in MODFLOW and PMPATH modeling. Saerom Park and Seong-Taek Yun contributed to review and comment. Seunghak Lee helped in funding acquisition, writing—revision and editing, project administration.

Corresponding author

Correspondence to Seunghak Lee.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S., Kang, P.K., Stuyfzand, P.J. et al. Identification of iron and sulfate release processes during riverbank filtration using chemical mass balance modeling. Environ Geochem Health 43, 3583–3596 (2021). https://doi.org/10.1007/s10653-021-00850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00850-0

Keywords

Navigation