Skip to main content

Advertisement

Log in

New drug discovery strategies for targeting drug-resistant bacteria

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The rise of multidrug-resistant human pathogenic bacteria is calling for alternative approaches to design antibacterial drugs. Here, we review new approaches based on antisense oligonucleotides as antibacterial agents, fecal microbiota transplantation, and antimicrobial peptides and cell-penetrating peptides with antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akdag IO, Ozkirimli E (2013) The Uptake Mechanism of the Cell-Penetrating pVEC Peptide. J Chem 2013:15–23. https://doi.org/10.1155/2013/851915

    Article  CAS  Google Scholar 

  • Alaybeyoglu B, Sariyar Akbulut B, Ozkirimli E (2018) pVEC hydrophobic N-terminus is critical for antibacterial activity. J Pept Sci 24:e3083

    Google Scholar 

  • Benincasa M, Pacor S, Gennaro R, Scocchi M (2009) Rapid and reliable detection of antimicrobial peptide penetration into gram-negative bacteria based on fluorescence quenching. Antimicrob Agents Chemother 53:3501–3504

    CAS  Google Scholar 

  • Borysowski J, Górski A (2008) Is phage therapy acceptable in the immunocompromised host? Int J Infect Dis 12:466–471

    Google Scholar 

  • Chan JH, Lim S, Wong WS (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33:533–540

    CAS  Google Scholar 

  • Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13:381–394

    CAS  Google Scholar 

  • Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, Hoffmann JA, Bulet P (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300(Pt 2):567–575

    CAS  Google Scholar 

  • Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227

    CAS  Google Scholar 

  • Domingo-Calap P, Georgel P, Bahram S (2016) Back to the future: bacteriophages as promising therapeutic tools. Hla 87:133–140

    CAS  Google Scholar 

  • Duckworth DH (1976) “Who discovered bacteriophage?” Bacteriol Rev 40:793–802

    CAS  Google Scholar 

  • Durzynska J, Przysiecka L, Nawrot R, Barylski J, Nowicki G, Warowicka A, Musidlak O, Gozdzicka-Jozefiak A (2015) Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. J Pharmacol Exp Ther 354:32–42

    CAS  Google Scholar 

  • Fensterseifer ICM, Felicio MR, Alves ESF, Cardoso MH, Torres MDT, Matos CO, Silva ON, Lu TK, Freire MV, Neves NC, Goncalves S, Liao LM, Santos NC, Porto WF, de la Fuente-Nunez C, Franco OL (2019) Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochim Biophys Acta Biomembr 1861:1375–1387

    CAS  Google Scholar 

  • Fernández L, McPhee JB, Tamber S, Brazas MD, Lewenza S, Hancock RE (2009) Antibiotic resistance due to reduced uptake, pp 97–110

  • Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496

    CAS  Google Scholar 

  • Garau J, Nicolau DP, Wullt B, Bassetti M (2014) Antibiotic stewardship challenges in the management of community-acquired infections for prevention of escalating antibiotic resistance. J Glob Antimicrob Resist 2:245–253

    Google Scholar 

  • Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5:381–391

    CAS  Google Scholar 

  • Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:15–27

    CAS  Google Scholar 

  • Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458

    Google Scholar 

  • Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, Neuberg J, Bagińska N, Weber-Dąbrowska B, Górski A (2019) Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti Infect Ther 17:583–606

    Google Scholar 

  • Kaloudas D, Pavlova N, Penchovsky R (2018) EBWS: essential bioinformatics web services for sequence analyses. IEEE/ACM Trans Comput Biol Bioinform 16(3):942–953

    Google Scholar 

  • Kauffman WB, Fuselier T, He J, Wimley WC (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40:749–764

    CAS  Google Scholar 

  • Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44:354–360

    Google Scholar 

  • Kurreck J (2003) ’Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem/FEBS 270:1628–1644

    CAS  Google Scholar 

  • Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8:39

    Google Scholar 

  • Langel U (2019) Classes and applications of cell-penetrating peptides. In: Cell-penetrating peptides (CPP). Springer, Singapore

  • Le CF, Fang CM, Sekaran SD (2017) Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 61

  • Lehman SM, Donlan RM (2015) Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother 59:1127–1137

    Google Scholar 

  • Lindblad W (2008) Review paper: considerations for determining if a natural product is an effective wound-healing agent. Int J Lower Extrem Wounds 7:75–81

    Google Scholar 

  • Lv M, Duan B, Lu K, Wu Y, Zhao Y (2017) Synthesis, DNA-binding and antibacterial activity of the cell-penetrating peptide HIV-1 Tat (49–57). Indian J Pharm Sci 79:893–899

    CAS  Google Scholar 

  • Malik S, Sidhu PK, Rana JS, Nehra K (2019) Managing urinary tract infections through phage therapy: a novel approach. Folia Microbiol (Praha)

  • Mantravadi PK, Kalesh KA, Dobson RCJ, Hudson AO, Parthasarathy A (2019) The quest for novel antimicrobial compounds: emerging trends in research, development, and technologies. Antibiotics (Basel) 8:8

    CAS  Google Scholar 

  • Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M (2014) The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21:1639–1647

    CAS  Google Scholar 

  • Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim D (2017) Antimicrobial drug resistance: mechanisms of drug resistance, vol 1. Springer, Cham

    Google Scholar 

  • Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518:409–412

    CAS  Google Scholar 

  • Meyers S, Shih J, Neher JO, Safranek S (2018) Clinical Inquiries: how effective and safe is fecal microbial transplant in preventing C difficile recurrence? J Fam Pract 67:386–388

    Google Scholar 

  • Moller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP (2018) Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep 8:17559

    Google Scholar 

  • Mullish BH, Quraishi MN, Segal JP, McCune VL, Baxter M, Marsden GL, Moore DJ, Colville A, Bhala N, Iqbal TH, Settle C, Kontkowski G, Hart AL, Hawkey PM, Goldenberg SD, Williams HRT (2018) The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 67:1920–1941

    Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4:1–24. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

  • Nakase I, Akita H, Kogure K, Graslund A, Langel U, Harashima H, Futaki S (2012) Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res 45:1132–1139

    CAS  Google Scholar 

  • Nan YH, Park IS, Hahm KS, Shin SY (2011) Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs. J Pept Sci 17:812–817

    CAS  Google Scholar 

  • Narayanan S, Modak JK, Ryan CS, Garcia-Bustos J, Davies JK, Roujeinikova A (2014) Mechanism of Escherichia coli resistance to Pyrrhocoricin. Antimicrob Agents Chemother 58:2754–2762

    Google Scholar 

  • Paik J, Duggan S (2019) Volanesorsen: first global approval. Drugs 79:1349–1354

    CAS  Google Scholar 

  • Palm C, Netzereab S, Hallbrink M (2006) Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 27:1710–1716

    CAS  Google Scholar 

  • Pavlova N, Kaloudas D, Penchovsky R (2019) Riboswitch distribution, structure, and function in bacteria. Gene 708:38–48

    CAS  Google Scholar 

  • Pelfrene E, Willebrand E, Cavaleiro Sanches A, Sebris Z, Cavaleri M (2016) Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother 71:2071–2074

    Google Scholar 

  • Penchovsky R, Traykovska M (2015) Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? Expert Opin Drug Discov 10:631–650

    CAS  Google Scholar 

  • Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:281

    Google Scholar 

  • Reiner Ž (2018) Triglyceride-rich lipoproteins and novel targets for anti-atherosclerotic therapy. Korean Circ J 48:1097–1119

    CAS  Google Scholar 

  • Rinaldi C, Wood MJA (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14:9–21

    CAS  Google Scholar 

  • Rodgers K, McLellan I, Peshkur T, Williams R, Tonner R, Hursthouse AS, Knapp CW, Henriquez FL (2019) Can the legacy of industrial pollution influence antimicrobial resistance in estuarine sediments? Environ Chem Lett 17:595–607

    CAS  Google Scholar 

  • Rodriguez L, Martinez B, Zhou Y, Rodriguez A, Donovan DM, Garcia P (2011) Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. BMC Microbiol 11:138

    CAS  Google Scholar 

  • Rodriguez Plaza JG, Morales-Nava R, Diener C, Schreiber G, Gonzalez ZD, Lara Ortiz MT, Ortega Blake I, Pantoja O, Volkmer R, Klipp E, Herrmann A, Del Rio G (2014) Cell penetrating peptides and cationic antibacterial peptides: two sides of the same coin. J Biol Chem 289:14448–14457

    CAS  Google Scholar 

  • Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sanchez-Melsio A, Borrego CM, Barcelo D, Balcazar JL (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242

    CAS  Google Scholar 

  • Runti G, Benincasa M, Giuffrida G, Devescovi G, Venturi V, Gennaro R, Scocchi M (2017) The mechanism of killing by the proline-rich peptide Bac7(1–35) against clinical strains of pseudomonas aeruginosa differs from that against other gram-negative bacteria. Antimicrob Agents Chemother 61

  • Scocchi M, Tossi A, Gennaro R (2011) Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci 68:2317–2330

    CAS  Google Scholar 

  • Seil M, Nagant C, Dehaye JP, Vandenbranden M, Lensink MF (2010) Spotlight on Human LL-37, an immunomodulatory peptide with promising cell-penetrating properties. Pharmaceuticals 3(11):3435–3460. https://doi.org/10.3390/ph3113435

    Article  CAS  Google Scholar 

  • Selgelid MJ (2007) Ethics and drug resistance. Bioethics 21:218–229

    Google Scholar 

  • Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, Vairale MG (2017) Bacteriophages and its applications: an overview. Folia Microbiol (Praha) 62:17–55

    CAS  Google Scholar 

  • Shi H, Ni J, Zheng T, Wang X, Chuanfu Wu, Wang Q (2020) ’Remediation of wastewater contaminated by antibiotics. A review. Environ Chem Lett 18:345–360

    CAS  Google Scholar 

  • Shogbesan O, Poudel DR, Victor S, Jehangir A, Fadahunsi O, Shogbesan G, Donato A (2018) A systematic review of the efficacy and safety of fecal microbiota transplant for clostridium difficile infection in immunocompromised patients. Can J Gastroenterol Hepatol 2018:1394379

    Google Scholar 

  • Singh SB, Phillips JW, Wang J (2007) Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Curr Opin Drug Discov Devel 10:160–166

    CAS  Google Scholar 

  • Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40:387–397

    CAS  Google Scholar 

  • Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25:1069–1075

    CAS  Google Scholar 

  • Sully EK, Geller BL (2016) Antisense antimicrobial therapeutics. Curr Opin Microbiol 33:47–55

    CAS  Google Scholar 

  • Tang SS, Apisarnthanarak A, Hsu LY (2014) Mechanisms of beta-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev 78:3–13

    CAS  Google Scholar 

  • Taniguchi M, Ochiai A, Kondo H, Fukuda S, Ishiyama Y, Saitoh E, Kato T, Tanaka T (2016) Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system. J Biosci Bioeng 121:591–598

    CAS  Google Scholar 

  • Traykovska M, Miedema S, Penchovsky R (2018) Clinical trials of functional nucleic acids: antisense oligonucleotides and aptamers. Int J Biomed Clin Eng (IJBCE) 7(2):46–60

    Google Scholar 

  • Valsamatzi-Panagiotou A, Popova KB, Penchovsky R (2020) Drug discovery for targeting drug resistant bacteria. In: Panwar H, Sharma C, Lichtfouse E (eds) Sustainable agriculture reviews 46 mitigation of antimicrobial resistance vol 1 tools and targets. Springer, Berlin

    Google Scholar 

  • Vellar I (2002) Howard Florey, Alexander Fleming and the fairy tale of penicillin. Med J Aust 177:52

    Google Scholar 

  • Waksman SA, Flynn JE (1973) History of the word ’antibiotic. J Hist Med Allied Sci 28:284–286

    CAS  Google Scholar 

  • Wang Z, Wang X, Wang J (2018) Recent advances in antibacterial and antiendotoxic peptides or proteins from marine resources. Mar Drugs 16:57

    Google Scholar 

  • Wei L, Gao J, Zhang S, Wu S, Xie Z, Ling G, Kuang YQ, Yang Y, Yu H, Wang Y (2015) Identification and characterization of the first cathelicidin from sea snakes with potent antimicrobial and anti-inflammatory activity and special mechanism. J Biol Chem 290:16633–16652

    CAS  Google Scholar 

  • Wilson BC, Vatanen T, Cutfield WS, O’Sullivan JM (2019) The super-donor phenomenon in fecal microbiota transplantation. Front Cell Infect Microbiol 9:2

    CAS  Google Scholar 

  • Wright GD (2009) Making sense of antisense in antibiotic drug discovery. Cell Host Microbe 6:197–198

    CAS  Google Scholar 

  • Yoon MY, Yoon SS (2018) Disruption of the gut ecosystem by antibiotics. Yonsei Med J 59:4–12

    CAS  Google Scholar 

  • Zhu WL, Lan H, Park IS, Kim JI, Jin HZ, Hahm KS, Shin SY (2006) Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem Biophys Res Commun 349:769–774

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Bulgarian National Science Fund under Grant No. DN/13/14/20.12.2017 and partially by the Operational Programme “Science and Education for Smart Growth” 2014-2020, co-funded by the European Union through the European structural and investment funds: Project BG05M2OP001-1.002-0019 “Clean technologies for sustainable environment – water, waste, energy for circular economy” (Clean&Circle CoC) by funding of the experts labor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Penchovsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, K.B., Valsamatzi-Panagiotou, A. & Penchovsky, R. New drug discovery strategies for targeting drug-resistant bacteria. Environ Chem Lett 19, 1995–2004 (2021). https://doi.org/10.1007/s10311-021-01181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-021-01181-3

Keywords

Navigation