Skip to main content
Log in

Huntington’s Disease: New Frontiers in Therapeutics

  • Movement Disorders (T. Simuni, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article describes and discusses new potential disease-modifying therapies for Huntington’s disease that are currently in human clinical trials as well as promising new therapies in preclinical development.

Recent Findings

Multiple potential disease-modifying therapeutics for HD are in active development, including direct DNA/gene therapies, RNA modulation, and therapies targeted at aberrant downstream pathways.

Summary

The etiology of Huntington’s disease (HD) is well-known as an abnormally expanded trinucleotide repeat within the huntingtin gene. However, the pathogenesis downstream of the mutant huntingtin gene is complex, involving multiple toxic pathways, including abnormal protein fragmentation and neuroinflammation. The current treatment of HD focuses largely on symptomatic management. This article discusses new, potential disease-modifying therapies that are currently in human clinical trials and preclinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord. 2012;27(9):1083–91. https://doi.org/10.1002/mds.25075.

    Article  PubMed  Google Scholar 

  2. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83. https://doi.org/10.1016/0092-8674(93)90585-e.

  3. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506. https://doi.org/10.1016/s0092-8674(00)81369-0.

    Article  CAS  PubMed  Google Scholar 

  4. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90(3):537–48. https://doi.org/10.1016/s0092-8674(00)80513-9.

    Article  CAS  PubMed  Google Scholar 

  5. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277(5334):1990–3. https://doi.org/10.1126/science.277.5334.1990.

    Article  CAS  PubMed  Google Scholar 

  6. Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW, et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc Natl Acad Sci U S A. 1998;95(11):6480–5. https://doi.org/10.1073/pnas.95.11.6480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov. 2018;17(10):729–50. https://doi.org/10.1038/nrd.2018.133.

    Article  CAS  PubMed  Google Scholar 

  8. Huntington Study G. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology. 2006;66(3):366–72. https://doi.org/10.1212/01.wnl.0000198586.85250.13.

    Article  CAS  Google Scholar 

  9. Huntington Study G, Frank S, Testa CM, Stamler D, Kayson E, Davis C, et al. Effect of deutetrabenazine on chorea among patients with Huntington disease: a randomized clinical trial. JAMA. 2016;316(1):40–50. https://doi.org/10.1001/jama.2016.8655.

    Article  CAS  Google Scholar 

  10. Stahl CM, Feigin A. Medical, surgical, and genetic treatment of Huntington disease. Neurol Clin. 2020;38(2):367–78. https://doi.org/10.1016/j.ncl.2020.01.010.

    Article  PubMed  Google Scholar 

  11. Bates G. Huntingtin aggregation and toxicity in Huntington’s disease. Lancet. 2003;361(9369):1642–4. https://doi.org/10.1016/S0140-6736(03)13304-1.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell. 2000;101(1):57–66. https://doi.org/10.1016/S0092-8674(00)80623-6.

    Article  CAS  PubMed  Google Scholar 

  13. Wang N, Gray M, Lu XH, Cantle JP, Holley SM, Greiner E, et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med. 2014;20(5):536–41. https://doi.org/10.1038/nm.3514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skotte NH, Southwell AL, Ostergaard ME, Carroll JB, Warby SC, Doty CN, et al. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One. 2014;9(9):e107434. https://doi.org/10.1371/journal.pone.0107434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kay C, Collins JA, Skotte NH, Southwell AL, Warby SC, Caron NS, et al. Huntingtin haplotypes provide prioritized target panels for allele-specific silencing in Huntington disease patients of European ancestry. Mol Ther. 2015;23(11):1759–71. https://doi.org/10.1038/mt.2015.128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leavitt BR, Kordasiewicz HB, Schobel SA. Huntingtin-lowering therapies for Huntington disease: a review of the evidence of potential benefits and risks. JAMA Neurol. 2020;77:764–72. https://doi.org/10.1001/jamaneurol.2020.0299.

    Article  PubMed  Google Scholar 

  17. •• Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, et al. Targeting huntingtin expression in patients with Huntington’s disease. N Engl J Med. 2019;380(24):2307–16. https://doi.org/10.1056/NEJMoa1900907Intrathecal ASO treatment that has demonstrated initial safety in humans and promising reduction of mHTT levels in CSF leading to phase III study initiation.

    Article  CAS  PubMed  Google Scholar 

  18. Sciences WL. Wave Life Sciences reports fourth quarter and full year 2019 financial results and provides business update https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-reports-fourth-quarter-and-full-year-20192020. p. 1–2.

  19. Rodrigues FB, Wild EJ. Huntington’s disease clinical trials corner: March 2020. J Huntingtons Dis. 2020;9:185–97. https://doi.org/10.3233/JHD-200002.

    Article  PubMed  Google Scholar 

  20. Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther. 2009;17(6):1053–63. https://doi.org/10.1038/mt.2009.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25(5):461–74. https://doi.org/10.1089/hum.2013.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. • Pfister EL, DiNardo N, Mondo E, Borel F, Conroy F, Fraser C, et al. Artificial miRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther. 2018;29(6):663–73. https://doi.org/10.1089/hum.2017.199Preclinical study that helped to initiate the human clinical trial for miRNA therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dufour BD, Smith CA, Clark RL, Walker TR, McBride JL. Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington’s disease mice. Mol Ther. 2014;22(4):797–810. https://doi.org/10.1038/mt.2013.289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther. 2018;26(3):664–8. https://doi.org/10.1016/j.ymthe.2018.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K, Okada Y et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett. 2018;665:182–8. https://doi.org/10.1016/j.neulet.2017.11.049.

  26. McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T, Ojeda SR, et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther. 2011;19(12):2152–62. https://doi.org/10.1038/mt.2011.219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fan B, Chen, F, Jianyu, S, Nilesh, P, Tyson, K, Bittner, K, Bales, K, Khwaja, O, Carter, T, Sah, D, Pengcheng, Z. . Phenotypic benefit of intrastriatal administration of the AAV gene therapy VY-HTT01 in the YAC128 mouse model of Huntington’s disease In: Therapy ASoGaC, editor. ASGCT 2020 April 28, 2020; Virtual https://www.asgct.org/global/documents/asgct20_abstracts_may8?_zs=S2i4b&_zl=U9052: Molecular Therapy; 2020. p. 95-.

  28. Zhou P, Carroll, J, Chen, F, Thompson, J, Aubin, J, Christensen E, Liu, L, Nguyen, T, Scheel, M, Pechan, P, Kells, A, Gamba-Vitalo, C, Hersch, S, Hou, J, Carter, T, Sah, D Robust Huntingtin knockdown in cortex and putamen in large mammals using a novel dosing paradigm with VY-HTT01, an AAV gene therapy targeting Huntington for the treatment of Huntington’s disease. In: therapy ESoGaC, editor. Changing the face of modern medicine: stem cell and gene therapy November 2018. https://www.esgct.eu/home/Previous Congresses/2018_Lausanne/2018_Lausanne_abstracts.pdf: human gene therapy 2018. p. 83-.

  29. Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101(5):801–19. https://doi.org/10.1016/j.neuron.2019.01.039.

    Article  CAS  PubMed  Google Scholar 

  30. Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci U S A. 2009;106(24):9607–12. https://doi.org/10.1073/pnas.0902420106.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garriga-Canut M, Agustin-Pavon C, Herrmann F, Sanchez A, Dierssen M, Fillat C, et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A. 2012;109(45):E3136–45. https://doi.org/10.1073/pnas.1206506109.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fink KD, Deng P, Gutierrez J, Anderson JS, Torrest A, Komarla A, et al. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human Huntington’s disease fibroblasts. Cell Transplant. 2016;25(4):677–86. https://doi.org/10.3727/096368916X690863.

    Article  PubMed  Google Scholar 

  33. •• Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M. Precise excision of the CAG tract from the huntingtin gene by Cas9 nickases. Front Neurosci. 2018;12:75. https://doi.org/10.3389/fnins.2018.00075Preclinical study demonstarting application of CRISPR/Cas9 DNA editing technique to HTT gene.

    Article  PubMed  PubMed Central  Google Scholar 

  34. •• Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest. 2017;127(7):2719–24. https://doi.org/10.1172/JCI92087Preclinical study applycing CRISPR/Cas9 DNA editing technology to HD mouse model.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Muhlback A, editor. Report from the 14th Huntington’s disease therapeutics conference Hungtington’s disease therapeutics conference 2019; Palm Springs, USA eurohuntington.org/2019/04/01/report-from-the-14th-huntingtons-disease-therapeutics-conference/2019.

  36. Liu CR, Chang CR, Chern Y, Wang TH, Hsieh WC, Shen WC, et al. Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell. 2012;148(4):690–701. https://doi.org/10.1016/j.cell.2011.12.032.

    Article  CAS  PubMed  Google Scholar 

  37. •• Cheng HM, Chern Y, Chen IH, Liu CR, Li SH, Chun SJ et al. Effects on murine behavior and lifespan of selectively decreasing expression of mutant huntingtin allele by supt4h knockdown. PLoS Genet. 2015;11(3):e1005043. https://doi.org/10.1371/journal.pgen.1005043. Preclinical study demonstrating application of small molecule modulators directed towards transcription factors in downregulating mutant huntingtin allele.

  38. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell. 2006;125(6):1179–91. https://doi.org/10.1016/j.cell.2006.04.026.

    Article  CAS  PubMed  Google Scholar 

  39. Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR, Ellerby LM. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem. 2004;279(19):20211–20. https://doi.org/10.1074/jbc.M401267200.

    Article  CAS  PubMed  Google Scholar 

  40. Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Petersen A, et al. Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain. 2009;132(Pt 4):919–32. https://doi.org/10.1093/brain/awp006.

    Article  PubMed  Google Scholar 

  41. Casaca-Carreira J, Toonen LJA, Evers MM, Jahanshahi A, van-Roon-Mom WMC, Temel Y. In vivo proof-of-concept of removal of the huntingtin caspase cleavage motif-encoding exon 12 approach in the YAC128 mouse model of Huntington’s disease. Biomed Pharmacother. 2016;84:93–6. https://doi.org/10.1016/j.biopha.2016.09.007.

  42. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369–84. https://doi.org/10.1097/00005072-199805000-00001.

    Article  CAS  PubMed  Google Scholar 

  43. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985;44(6):559–77. https://doi.org/10.1097/00005072-198511000-00003.

    Article  CAS  PubMed  Google Scholar 

  44. Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, Jones R, Johnson H, Craufurd D, Hicks SL, Kennard C, Landwehrmeyer B, Stout JC, Borowsky B, Scahill RI, Frost C, Langbehn DR, TRACK-HD investigators. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 2012;11(1):42–53. https://doi.org/10.1016/S1474-4422(11)70263-0.

  45. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250(4986):1429–32. https://doi.org/10.1126/science.2147780.

    Article  CAS  PubMed  Google Scholar 

  46. Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat. 2004;27(3):143–64. https://doi.org/10.1016/j.jchemneu.2004.02.005.

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh R, Tabrizi SJ. Clinical features of Huntington’s disease. Adv Exp Med Biol. 2018;1049:1–28. https://doi.org/10.1007/978-3-319-71779-1_1.

    Article  CAS  PubMed  Google Scholar 

  48. Fatoba O, Ohtake Y, Itokazu T, Yamashita T. Immunotherapies in Huntington’s disease and alpha-Synucleinopathies. Front Immunol. 2020;11:337. https://doi.org/10.3389/fimmu.2020.00337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60(2):161–72. https://doi.org/10.1093/jnen/60.2.161.

    Article  CAS  PubMed  Google Scholar 

  50. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006;66(11):1638–43. https://doi.org/10.1212/01.wnl.0000222734.56412.17.

    Article  CAS  PubMed  Google Scholar 

  51. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med. 2008;205(8):1869–77. https://doi.org/10.1084/jem.20080178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130(Pt 7):1759–66. https://doi.org/10.1093/brain/awm044.

    Article  PubMed  Google Scholar 

  53. Rocha NP, Ribeiro FM, Furr-Stimming E, Teixeira AL. Neuroimmunology of Huntington’s disease: revisiting evidence from human studies. Mediat Inflamm. 2016;2016:8653132–10. https://doi.org/10.1155/2016/8653132.

    Article  CAS  Google Scholar 

  54. Rizzuto R, Duchen MR, Pozzan T. Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE. 2004;2004(215):re1. https://doi.org/10.1126/stke.2152004re1.

  55. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 2007;131(3):596–610. https://doi.org/10.1016/j.cell.2007.08.036.

    Article  CAS  PubMed  Google Scholar 

  56. Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A. 2005;102(7):2602–7. https://doi.org/10.1073/pnas.0409402102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron. 2003;39(2):227–39. https://doi.org/10.1016/s0896-6273(03)00366-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia-Miralles M, Geva M, Tan JY, Yusof N, Cha Y, Kusko R et al. Early pridopidine treatment improves behavioral and transcriptional deficits in YAC128 Huntington disease mice. JCI Insight. 2017;2(23). https://doi.org/10.1172/jci.insight.95665.

  59. Ryskamp D, Wu J, Geva M, Kusko R, Grossman I, Hayden M et al. The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis. 2017;97(Pt A):46–59. https://doi.org/10.1016/j.nbd.2016.10.006.

  60. Squitieri F, Di Pardo A, Favellato M, Amico E, Maglione V, Frati L. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med. 2015;19(11):2540–8. https://doi.org/10.1111/jcmm.12604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huntington Study Group HI. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord. 2013;28(10):1407–15. https://doi.org/10.1002/mds.25362.

    Article  CAS  Google Scholar 

  62. de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, Saft C, Magnet MK, Sword A, Rembratt A, Tedroff J, MermaiHD study investigators. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2011;10(12):1049–1057. https://doi.org/10.1016/S1474-4422(11)70233-2.

  63. •• Reilmann R, McGarry A, Grachev ID, Savola JM, Borowsky B, Eyal E et al. Safety and efficacy of pridopidine in patients with Huntington’s disease (PRIDE-HD): a phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurol. 2019;18(2):165–76. https://doi.org/10.1016/S1474-4422(18)30391-0. Initial results from phase II study of pridopidine suggesting improvement of motor scores and dystonia in early stage participants.

  64. •• Kieburtz Kea. Efficacy, safety, and tolerability of pridopidine in Huntington disease (HD): results from the phase II, double-blind, placebo-controlled, dose-ranging study, Pride-HD [abstract]. . Mov Disord. 2017;32 (suppl. 2). Important post-hoc analysis from phase II study of pridopidine showing benefit in TFC scores.

  65. Kumanogoh A, Watanabe C, Lee I, Wang X, Shi W, Araki H, et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity. 2000;13(5):621–31. https://doi.org/10.1016/s1074-7613(00)00062-5.

    Article  CAS  PubMed  Google Scholar 

  66. Okuno T, Nakatsuji Y, Moriya M, Takamatsu H, Nojima S, Takegahara N, et al. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. J Immunol. 2010;184(3):1499–506. https://doi.org/10.4049/jimmunol.0903302.

    Article  CAS  PubMed  Google Scholar 

  67. Southwell AL, Franciosi S, Villanueva EB, Xie Y, Winter LA, Veeraraghavan J, et al. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol Dis. 2015;76:46–56. https://doi.org/10.1016/j.nbd.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  68. LaGanke C, Samkoff L, Edwards K, Jung Henson L, Repovic P, Lynch S, et al. Safety/tolerability of the anti-semaphorin 4D antibody VX15/2503 in a randomized phase 1 trial. Neurol Neuroimmunol Neuroinflamm. 2017;4(4):e367. https://doi.org/10.1212/NXI.0000000000000367.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Evans E, editor. Regulation of glial cell activation and neurodegeneration by anti-semaphorin 4D antibody pepinemab, potential treatment for Alzheimer’s and Huntington’s disease Advances in Alzheimer’s and Parkinson’s therapies an AAT-AD/PD focus meeting April 2020; Vienna, Austria; https://ir.vaccinex.com/static-files/7affd508-0cbc-490d-9567-be4064b7bafc.

  70. Torper O, Ottosson DR, Pereira M, Lau S, Cardoso T, Grealish S, et al. In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell Rep. 2015;12(3):474–81. https://doi.org/10.1016/j.celrep.2015.06.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barker RA, Gotz M, Parmar M. New approaches for brain repair-from rescue to reprogramming. Nature. 2018;557(7705):329–34. https://doi.org/10.1038/s41586-018-0087-1.

    Article  CAS  PubMed  Google Scholar 

  72. Pereira M, Birtele M, Shrigley S, Benitez JA, Hedlund E, Parmar M, et al. Direct reprogramming of resident NG2 glia into neurons with properties of fast-spiking parvalbumin-containing interneurons. Stem Cell Reports. 2017;9(3):742–51. https://doi.org/10.1016/j.stemcr.2017.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports. 2015;4(5):780–94. https://doi.org/10.1016/j.stemcr.2015.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ge L-J, Yang, F-H., Chen, N-H., Jiang, M., Wang, J-H., Hu, X-T., Chen, G. . In vivo neuroregeneration to treat ischemic stroke in adult non-human primate brains throught NeuroD1 AAV-based gene therapy. bioRxiv. 2019. https://doi.org/10.1101/816066.

  75. Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron. 2014;84(2):311–23. https://doi.org/10.1016/j.neuron.2014.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Wu Z, Parry M, Hou XY, Liu MH, Wang H, Cain R et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat Commun. 2020;11(1):1105. https://doi.org/10.1038/s41467-020-14855-3. Preclinical studies showing potential to reprogram glial cells into functional striatal cells in HD mouse models.

  77. Ramsingh AI, Manley K, Rong Y, Reilly A, Messer A. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington’s disease. Hum Mol Genet. 2015;24(21):6186–97. https://doi.org/10.1093/hmg/ddv335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Butler DC, Messer A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS One. 2011;6(12):e29199. https://doi.org/10.1371/journal.pone.0029199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iqra Mumal M. Skyhawk, Celgene partner to develop small molecule treatments for Huntington’s, other neurological diseases Huntington’s disease news https://huntingtonsdiseasenews.com/2018/07/05/huntingtons-disease-other-neurological-disorders-target-skyhawk-therapeutics-celgene-partnership/. 2018.

  80. Sivaramakrishnan M, McCarthy KD, Campagne S, Huber S, Meier S, Augustin A, et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun. 2017;8(1):1476. https://doi.org/10.1038/s41467-017-01559-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Pan.

Ethics declarations

Conflict of Interest

Ling Pan declares that she has no conflict of interest. Andrew Feigin has consulted for NeuExcell Therapeutics, Voyager Therapeutics and Stealth BioTherapeutics. He has received grant support from Vaccinex, and Prilenia Therapeutics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Feigin, A. Huntington’s Disease: New Frontiers in Therapeutics. Curr Neurol Neurosci Rep 21, 10 (2021). https://doi.org/10.1007/s11910-021-01093-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01093-3

Keywords

Navigation