Skip to main content
Log in

Global transversal stability of Euclidean planes under skew mean curvature flow evolutions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove that 2 dimensional transversal small perturbations of d-dimensional Euclidean planes under the skew mean curvature flow lead to global solutions which converge to the unperturbed planes in suitable norms. And we clarify the long time behaviors of the solutions in Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, C.: The mean curvature flow of submanifolds of high codimension. Ph.D. thesis, Australian National University (2010). arXiv:1104.4409

  2. Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Global Schrödinger maps in dimensions \(d\ge 2\): small data in the critical Sobolev spaces. Ann. Math. 173, 1443–1506 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chang, N.H., Shatah, J., Uhlenbeck, K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 590–602 (2000)

    Article  Google Scholar 

  4. Da Rios, L.: On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ. Mat. Palermo 22, 117–135 (1906)

    Article  Google Scholar 

  5. Ding, W., Wang, Y.: Local Schrödinger flow into Kähler manifolds. Sci. China Ser. A 44(11), 1446–1464 (2001)

    Article  MathSciNet  Google Scholar 

  6. Gomez, H.: Binormal motion of curves and surfaces in a manifold. Ph.D. thesis, University of Maryland (2004)

  7. Haller, S., Vizman, C.: Non-linear Grassmannians as coadjoint orbits. Math. Ann. 329(4), 771–785 (2004)

    Article  MathSciNet  Google Scholar 

  8. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  9. Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51, 477–485 (1972)

    Article  MathSciNet  Google Scholar 

  10. Jerrard, R.: Vortex filament dynamics for Gross–Pitaevsky type equations. Ann. Sc. Norm. Super. Pisa CI. Sci. 1(4), 733–768 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Kenig, C.E., Ponce, G., Rolvung, C., Vega, L.: The general quasilinear ultrahyperbolic Schrödinger equation. Adv. Math. 196(2), 402–433 (2005)

    Article  Google Scholar 

  12. Kenig, C.E., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10, 255–288 (1993)

    Article  MathSciNet  Google Scholar 

  13. Kenig, C.E., Ponce, G., Vega, L.: Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134, 489–545 (1998)

    Article  MathSciNet  Google Scholar 

  14. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for quasi-linear Schrödinger equations. Invent. Math. 158, 343–388 (2004)

    Article  MathSciNet  Google Scholar 

  15. Khesin, B.: Symplectic structures and dynamics on vortex membranes. Mosc. Math. J. 12(2), 46–462 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Khesin, B., Yang, C.: Higher-dimensional Euler fluids and Hasimoto transform: counterexamples and generalizations. arXiv preprint arXiv:1902.08834 (2019)

  17. Klainerman, S.: Long-time behavior of solutions to nonlinear evolution equations. Arch. Ration. Mech. Anal. 78(1), 73–98 (1982)

    Article  MathSciNet  Google Scholar 

  18. Lin, F.: Complex Ginzburg–Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Commun. Pure Appl. Math. 51, 385–441 (1998)

    Article  MathSciNet  Google Scholar 

  19. Lin, F.: Topological vorticity and geometric conserved motion. Lecture presented at Workshop on Geometric Partial Differential Equations, Institute for Advanced Study, Princeton (2009)

  20. Mantegazza, C.: Smooth geometric evolutions of hypersurfaces. Geom. Funct. Anal. 12, 138–182 (2002)

    Article  MathSciNet  Google Scholar 

  21. Marzuola, J.L., Metcalfe, J., Tataru, D.: Quasilinear Schrödinger equations II: small data and cubic nonlinearities. Kyoto J. Math. 54(3), 179–190 (2012)

    MATH  Google Scholar 

  22. Marzuola, J.L., Metcalfe, J., Tataru, D.: Quasilinear Schrödinger equations I: small data and quadratic interactions. Adv. Math. 231(2), 1151–1172 (2012)

    Article  MathSciNet  Google Scholar 

  23. Marzuola, J.L., Metcalfe, J., Tataru, D.: Quasilinear Schrödinger equations III: large data and short time (2020)

  24. Marsden, J., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D 7(1–3), 305–323 (1983)

    Article  MathSciNet  Google Scholar 

  25. Shashikanth, B.N.: Vortex dynamics in \(R^4\). J. Math. Phys. 53, 013103 (2012)

    Article  MathSciNet  Google Scholar 

  26. Song, C.: Gauss map of the skew mean curvature flow. Proc. Am. Math. Soc. 145(11), 4963–4970 (2017)

    Article  MathSciNet  Google Scholar 

  27. Song, C., Sun, J.: Skew mean curvature flow. Commun. Contemp. Math. 21(1), 1750090 (2019)

    Article  MathSciNet  Google Scholar 

  28. Song, C.: Local existence and uniqueness of skew mean curvature flow. arXiv:1904.03822

  29. Taylor, M.: Partial Differential Equations III, Nonlinear Equations. Applied Mathematical Sciences, vol. 117, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  30. Terng, C.: Dispersive geometric curve flows. In: Surveys in Differential Geometry 2014. Regularity and Evolution of Nonlinear Equations, Surveys in Differential Geometry, vol. 19, pp. 179–229. International Press, Somerville (2015)

  31. Terng, C., Uhlenbeck, K.: Schrödinger flows on Grassmannians. In: Integrable Systems. Geometry, and Topology, AMS/IP Studies in Advanced Mathematics, vol. 36, pp. 235–256. American Mathematical Society, Providence (2006)

  32. Vega, L.: The dynamics of vortex flaments with corners. http://www.ehu.eus/luisvega/data/ uploads/sapporo-agosto-2014.pdf

Download references

Acknowledgements

The author owes sincere gratitude to the referees for the insightful comments which have deeply improved the presentation of this work. The author thanks Prof. Chong Song and Youde Wang for drawing the author’s attention to SMCF and pointing out an error in the first version of this manuscript. This work is partially supported by NSF-China Grant-1200010237 and Grant-11631007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Li.

Additional information

Communicated by Y.Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following is Hamilton’s interpolation inequality proved in [8, Section 12].

Lemma 6.1

Let T be any Tensor defined on manifold \(\Sigma \). For \(1\le j\le i-1\), there exists a constant C depending only on dimension of \(\Sigma \) and i, which is independent of the metric g and connection such that

$$\begin{aligned} \int _{\Sigma } |\nabla ^{j} T|^{\frac{2i}{j}}d\mu \le C\max _{\Sigma }|T|^{2(\frac{i}{j}-1)}\int _{\Sigma } |\nabla ^{i} T|^{2}d\mu . \end{aligned}$$
(6.1)

The following is linear dispersive estimates.

Lemma 6.2

Let \(1\le q\le 2\), and \(f\in L^{q}({\mathbb {R}}^d)\). Then there exists a constant \(C>0\) depending only on qd such that

$$\begin{aligned} \Vert e^{i\Delta t}f\Vert _{L^{q'}_x}\le C t^{\frac{d}{2}(1-\frac{2}{q})}\Vert f\Vert _{L^q_x}, \end{aligned}$$
(6.2)

where \(q'=\frac{q}{q-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z. Global transversal stability of Euclidean planes under skew mean curvature flow evolutions. Calc. Var. 60, 57 (2021). https://doi.org/10.1007/s00526-021-01921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01921-x

Mathematics Subject Classification

Navigation