Skip to main content
Log in

Knowledge Objects of Synthetic Biology: From Phase Transitions to the Biological Switch

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

Following Hans-Jörg Rheinberger’s epistemological concept we show how a generic element of synthetic biology, the “biological switch”, can be integrated into an experimental system. Here synthetic biology is assumed to be a technoscience. Hence, the biological switch becomes a technoscientific research object. Consequently, the experimental system has to be analyzed in a technoscientific experimental setting, showing differences in comparison with the former. To work out the specific properties of the technoscientific experimental system, biological switching behavior (bistability) is compared with the scientific research object laser light in its classical setting. For the analyses, both the laser light and bistability, enabling a biological switch, are considered as epistemic things connected by the same theoretical concept of phase transitions. The so-called Schlögl model is used to model both biological switching behavior and induced emission of radiation and becomes an epistemic thing in itself. It becomes clear that the answer, whether one is dealing with the emission of laser light or with bistable switching behavior, is linked to the perspective taken. The technoscientific orientation towards applications and the development of basic scientific theories require different perspectives on one and the same epistemic thing, here also represented by the model. The research objects of synthetic biology as a technoscience thus also enter into the corresponding experimental systems as techno-epistemic objects. (Please note especially footnote 4 for an explanation and the differentiation of the used notions of “research object”, “knowledge object” or “object of knowledge”, “object of interest” and “epistemic thing” and “techno-epistemic object”. A clarification of the way how these notions are used is essential for further reading.) Their analysis leads to a more complete understanding of what constitutes synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The three different representations given here are based on a publication by Jan C. Schmidt, see Schmidt (2012). Schmidt argues for principles of self-organization as a common denominator of the different approaches of explanation.

  2. The philosopher of science, Paul Feyerabend, characterized this as “separability assumption” (Feyerabend 1999; see also Nordmann 2004, 2).

  3. See particularly Rheinberger (2002).

  4. Here we have to thank the anonymous reviewers claiming a clear terminology: As an umbrella term we are using “research object”. Research objects do not necessarily represent epistemic things (Rheinberger 1992; see also Kastenhofer 2013, 134), they can perform only some enabling function or provide assistance. We use this term in a rather general, unspecific manner. The epistemic thing represents the “object of discourse” (Rheinberger 2002, 15; original in German, all citations from this book are our translations) or the “thing, whom the efforts of knowledge” (Rheinberger 2002, 24) in a scientific experimental system pertains. Taken up one hint of one of the reviewers we are talking of a “techno-epistemic object” in regard of an epistemic thing in a technoscientific experimental system. The notion “technical object” holds for both, a stabilized epistemic thing and a stabilized techno-epistemic object. We avoid using “knowledge object” or “object of interest” but would classify these notions also as rather unspecific umbrella terms.

  5. Again we have to thank one of the anonymous reviewers, addressing the question what a “technoscientific experimental system would be?”

  6. The double meaning of the term “phase” should be pointed out here. On the one hand this characterizes a state, on the other hand the relationship of two wave trains to each other.

  7. Just as a distinction must be made between different active laser media, various processes have also been designed for energy input for population inversion. In addition to optical pumping, other methods are also common.

  8. See Haken (1970, 351) for details.

  9. For a short biography (obituary) see Bausch et al. (2011).

  10. Phase transitions are generally divided into different classes. Here a classification according to Paul Ehrenfest (Ehrenfest classification) is common. First-order phase transitions are characterized by a continuous transition, second-order phase transitions show jumps or discontinuities. Analytically, this behavior is shown by the continuity or discontinuity of the corresponding derivatives of the related functions. The Landau theory represents a more detailed description of the transitions.

  11. Unlike a switch, bistability can only be interpreted as a technical quantity depending on the context.

    It is worth noting that switching, flip-flop circuits and bistability in chemical molecules is a popular topic in artificial molecular machine research. See also the Nobel Prize in Chemistry 2016 “for the design and synthesis of molecular machines”.

  12. Again a remark regarding the terminology is necessary: The relationship techno-epistemic object–technoscientific object corresponds to epistemic thing–technical object. Hence the technoscientific object is interpreted as a stabilized techno-epistemic object (or simply technical object) able to becoming part of a technological setting.

  13. It cannot be said at this point whether Haken was the first to make this connection. Fischer points out that Haken preferred to publish his works in German and was therefore less read. See Fischer (2010, 156).

  14. Nelson et al. (2010, 40) anecdotally describe the naming process: Arthur Schwalow stated that the phenomenon observed was more of an oscillation than an amplification. This would have meant, however, that instead of “light amplification” we would have had to speak of “light oscillation by stimulated emission of radiation”. The acronym “LASER” would have become a “LOSER”, which did not particularly convince the participants. Nevertheless, the short story refers to inconsistencies in relation to the ontological character of the phenomenon.

References

  • Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology,2(1), 1–14.

    Article  Google Scholar 

  • Bausch, R., Bessenrodt, R., Dohm, V., Janssen, H.-K., Schöll, E., & Stahl, A. (2011). Nachruf auf Friedrich Schlögl. Physik Journal,10(7), 46.

    Google Scholar 

  • Bensaude-Vincent, B., Loeve, S., Nordmann, A., & Schwarz, A. (2011). Matters of interest: The objects of research in science and technoscience. Journal for General Philosophy of Science,42(2), 365–383.

    Article  Google Scholar 

  • Collins, R. J., Nelson, D. F., Schawlow, A. L., Bond, W., Garrett, C. G. B., & Kaiser, W. (1960). Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby. Physical Review Letters,5(7), 303–305.

    Article  Google Scholar 

  • Deutsche Forschungsgemeinschaft (DFG), Deutsche Akademie der Technikwissenschaften (acatach), & Deutsche Akademie der Naturforscher Leopoldina (Eds.). (2009). Synthetische Biologie. Stellungnahme; Standpunkte. Weinheim: Wiley-VCH.

    Google Scholar 

  • Drubin, D. A., Way, J. C., & Silver, P. A. (2007). Designing biological systems. Genes & Development,21(3), 242–254.

    Article  Google Scholar 

  • Endres, R. G. (2015). Bistability: Requirements on cell-volume, protein diffusion, and thermodynamics. PLOS ONE, 10(4), e0121681. https://doi.org/10.1371/journal.pone.0121681.

    Article  Google Scholar 

  • Endy, D. (2005). Foundations for engineering biology. Nature,438(7067), 449–453.

    Article  Google Scholar 

  • ETC Group (Action Group on Erosion, Technology and Concentration). (2007). Extreme genetic engineering: An introduction to synthetic biology. http://www.etcgroup.org/content/extreme-genetic-engineering-introduction-synthetic-biology.

  • European Commission. (2005). Synthetic biology. Report of a NEST high-level expert group EU 21796, Brüssel.

  • Falk, J., Mendler, M., & Drossel, B. (2017). A minimal model of burst-noise induced bifurcations. PLOS ONE, 12(4), e0176410. https://doi.org/10.1371/journal.pone.0176410.

    Article  Google Scholar 

  • Feyerabend, P. (1999). Conquest of abundance. Chicago: Chicago University Press.

    Google Scholar 

  • Fischer, E. P. (2010). LASER. Eine deutsche Erfolgsgeschichte von Einstein bis heute. München: Siedler.

    Google Scholar 

  • Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature,403(6767), 339–342.

    Article  Google Scholar 

  • Goldbeter, A., & Koshland, D. E., Jr. (1981). An amplified sensitivity arising from covalent modification in biological systems. Proceedings of National Academy of Sciences,78(11), 6840–6844.

    Article  Google Scholar 

  • Gramelsberger, G. (2013). The simulation approach in synthetic biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences,44(2), 150–157.

    Article  Google Scholar 

  • Haken, H. (1970). Laserlicht – Ein neues Beispiel für eine Phasenumwandlung? In: Deutsche Physikalische Gesellschaft (Ed.), Festkörperprobleme X. Advances in Solid State Physics. Freudenstadt, 6. bis 11. April 1970 (pp. 351–365). Braunschweig: Vieweg und Sohn.

  • Huang, C.-Y. F., & Ferrell, J. E., Jr. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proceedings of National Academy of Sciences,93(19), 10078–10083.

    Article  Google Scholar 

  • Jacob, F. (1988). Die innere Statue. Autobiografie des Genbiologen und Nobelpreisträgers. Zürich: Ammann.

    Google Scholar 

  • Kastenhofer, K. (2013). Two sides of the same coin? The (techno)epistemic cultures of system and synthetic biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences,44(2), 130–140.

    Article  Google Scholar 

  • Krämer, S., Kogge, W., & Grube, G. (2016). Spur. Spurenlesen als Orientierungstechnik und Wissenskunst. Frankfurt: Suhrkamp.

    Google Scholar 

  • Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., et al. (2005). Engineering Escherichia coli to see light. Nature,438(7067), 441–442.

    Article  Google Scholar 

  • Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature,187(4736), 493–494.

    Article  Google Scholar 

  • Morrison, M. (2015). Reconstructing reality. Models, mathematics, and simulations. New York: Oxford University Press.

    Book  Google Scholar 

  • Nelson, D. F., Collins, R. J., & Kaiser, W. (2010). Bell labs and the ruby laser. Physics Today,63(1), 40–45.

    Article  Google Scholar 

  • Nordmann, A. (2004). Was ist TechnoWissenschaft? – Zum Wandel der Wissenschaftskultur am Beispiel von Nanoforschung und Bionik. In T. Rossmann & C. Tropea (Eds.), Bionik: Aktuelle Forschungsergebnisse in Natur-, Ingenieur- und Geisteswissenschaften (pp. 209–218). Berlin: Springer.

    Google Scholar 

  • Nordmann, A. (2014). Synthetic biology at the limits of science. In B. Giese, C. Pade, H. Wigger, & A. von Gleich (Eds.), Synthetic biology. Character and impact (pp. 31–58). Heidelberg: Springer.

    Google Scholar 

  • Rheinberger, H.-J. (1992). Experiment – Differenz – Schrift. Zur Geschichte epistemischer Dinge. Marburg an der Lahn: Basilisken-Presse.

    Google Scholar 

  • Rheinberger, H.-J. (2002). Experimentalsysteme und epistemische Dinge. Eine Geschichte der Proteinsynthese im Reagenzglas. Göttingen: Wallstein.

    Google Scholar 

  • Rheinberger, H.-J. (2007). Wie werden aus Spuren Daten, und wie verhalten sich Daten zu Fakten? Nach Feierabend. Züricher Jahrbuch für Wissensgeschichte,3, 117–125.

    Google Scholar 

  • Rheinberger, H.-J. (2009). Sichtbar Machen. Visualisierung in den Naturwissenschaften. In K. Sachs-Hornbach (Ed.), Bildtheorien: Anthropologische und kulturelle Grundlagen des Visualistic Turn (pp. 127–145). Frankfurt: Suhrkamp.

    Google Scholar 

  • Rheinberger, H.-J. (2011). Infra-experimentality: From traces to data, from data to patterning facts. History of Science,49(3), 337–348.

    Article  Google Scholar 

  • Rheinberger, H.-J. (2015). Über den Eigensinn epistemischer Dinge. In H. P. Hahn (Ed.), Vom Eigensinn der Dinge. Für eine neue Perspektive auf die Welt des Materiellen (pp. 147–162). Berlin: Neofilis.

    Google Scholar 

  • Rheinberger, H.-J. (2016). Spurenlesen im Experimentalsystem. In S. Krämer, W. Kogge, & G. Grube (Eds.), Spur. Spurenlesen als Orientierungstechnik und Wissenskunst (pp. 293–308). Frankfurt: Suhrkamp.

    Google Scholar 

  • Schlögl, F. (1972). Chemical reaction models for non-equilibrium phase transitions. Zeitschrift für Physik,253(2), 147–161.

    Article  Google Scholar 

  • Schmidt, J. C. (2012). Selbstorganisation als Kern der Synthetischen Biologie. Ein Beitrag zur “Prospektiven Technikfolgenabschätzung”. Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis,21(2), 29–35.

    Article  Google Scholar 

  • Schwarz, A., & Nordmann, A. (2010). The political economy of technoscience. In M. Carrier & A. Nordmann (Eds.), Science in the context of application. Boston Studies in the philosophy of science 274 (pp. 317–336). Dordrecht: Springer.

    Google Scholar 

  • Stadtman, E. R., & Chock, P. B. (1977). Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems. Proceedings of the National Academy of Sciences,74(7), 2761–2765.

    Article  Google Scholar 

  • Tessy Consortium. (2008). Information leaflet: Synthetic biology in Europe. http://www.eurosfaire.prd.fr/7pc/doc/1245144155_tessy_final_report_d5_3.pdf.

  • Thomas, R. (1994). The role of feedback circuits: Positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Berichte der Bundesgesellschaft für physikalische Chemie,98(9), 1148–1151.

    Article  Google Scholar 

  • Vellela, M., & Qian, H. (2009). Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: The Schlögl model revisited. Journal of the Royal Society, Interface,6(39), 925–940.

    Article  Google Scholar 

  • Wilhelm, T. (2009). The smallest chemical reaction system with bistability. BMC Systems Biology,3(1), Article 90. https://doi.org/10.1186/1752-0509-3-90.

    Article  Google Scholar 

Download references

Funding

Funding was provided by Hessisches Ministerium für Wissenschaft und Kunst (DE), LOEWE CompuGene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Kohl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohl, T., Falk, J. Knowledge Objects of Synthetic Biology: From Phase Transitions to the Biological Switch. J Gen Philos Sci 51, 1–17 (2020). https://doi.org/10.1007/s10838-019-09478-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-019-09478-2

Keywords

Navigation