Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag January 17, 2020

Several non-standard problems for the stationary Stokes system

  • Dagmar Medková ORCID logo EMAIL logo
From the journal Analysis

Abstract

This paper studies the Stokes system -Δ𝐮+ρ=𝐟, 𝐮=χ in Ω with three boundary conditions:

𝐧𝐮=𝐧𝐠,𝐧×(×𝐮)=𝐧×𝐡on Ω,
𝐧𝐮=𝐧𝐠,𝝉[𝐮𝐧-ρ𝐧+b𝐮]=𝐡τon Ω,
𝐧𝐮=𝐧𝐠,[T(𝐮,ρ)𝐧+b𝐮]τ=𝐡τon Ω.

Here Ω is a bounded simply connected planar domain. We find a necessary and sufficient condition for the existence of a solution in Sobolev spaces Ws,q(Ω;2)×Ws-1,q(Ω), with 1+1/q<s<, in Besov spaces Bsq,r(Ω;2)×Bs-1q,r(Ω), with 1+1/q<s<, and classical solutions in 𝒞k,α(Ω¯,2)×𝒞k-1,α(Ω¯), with 0<α<1, k.

MSC 2010: 35Q35

Award Identifier / Grant number: GA17-01747S

Funding statement: The research was supported by RVO: 67985840 and GAČR grant No. 17-01747S.

A Appendix

A.1 Holomorphic functions

Lemma A.1.

Let ξ+iη be a holomorphic function in Ω. If ηCk,α(Ω¯) with kN0 and 0<α<1, then ξCk,α(Ω¯).

Proof.

Suppose first that k=0. The domain with Lipschitz boundary satisfies the property Pα by [40, p. 394]. Therefore, ξ𝒞0,α(Ω¯), by [40, Corollary 3.7].

If k0, we use that fact that βξ+iβη is a holomorphic function for arbitrary multiindex β. ∎

Lemma A.2.

Let ξ+iη be a holomorphic function in Ω, 1<q<, 0<s<. If ηWs,q(Ω), then ξWs,q(Ω).

Proof.

For the case s, see [40, Proposition 9.2]. Let now s. Since Ws,q(Ω)W1/2,q(Ω), one has ξW1/2,q(Ω)Lq(Ω). The rest is a consequence of the fact that 1ξ=2η, 2ξ=-1η. ∎

Lemma A.3.

Let ξ+iη be a holomorphic function in Ω. If ηBsq,r(Ω), with 1<q,r<, 0<s<, then ξBsq,r(Ω).

Proof.

We can suppose that ηBsq,r(2). Then jηBs-1q,r(2) by [47, Chapter 3, Theorem 9]. Thus, 1ξ=2ηBs-1q,r(2), 2ξ=-1ηBs-1q,r(2). Proposition 7.6 of [41] gives ξBsq,r(Ω). ∎

Lemma A.4.

Let ξ+iη be a holomorphic function in Ω and 1<q<. If Ma(η)Lq(Ω), then Ma(ξ)Lq(Ω) and there exist non-tangential limits of ξ and η at almost all points of Ω.

Proof.

If u is a harmonic function in Ω, then Ma(u)Lq(Ω) if and only if Aa(u)Lq(Ω), where

Aa(u)(𝐱)=[Γa(𝐱)|u(𝐲)|2d𝐱]1/2.

(See [17, Theorem] or [28, Theorem 1.5.10].) Since 1ξ=2η, 2ξ=-1η and therefore Aa(ξ)=Aa(η), we infer Ma(ξ)Lq(Ω). Since Ma(ξ),Ma(η)Lq(Ω), there exist non-tangential limits of ξ and η at almost all points of Ω by [23] and [24, Theorem 1]. ∎

A.2 The Dirichlet problem for the Laplace equation

Theorem A.5.

Let Ω be of class Ck,1 with kN, and 1<p,q<, 1/p<sk+1.

  1. If fWs-2,p(Ω), gWs-1/p,p(Ω) and s-1/p, then there exists a unique solution uWs,p(Ω) of the Dirichlet problem

    (A.1)Δu=fin Ω,u=gon Ω.
  2. If fBs-2p,q(Ω), gBs-1/pp,q(Ω) and s<k+1, then there exists a unique solution uBsp,q(Ω) of the Dirichlet problem (A.1).

Proof.

If s<1+1/p, then (a) is a consequence of [39, Corollary 4.2]. If s, s>1, then (a) follows from [22, Theorem 2.4.2.5 and Theorem 2.5.1.1]. We obtain the rest by real interpolation. (See [53, Lemma 22.3], [56, Corollary 1.111, Theorem 1.122] and [19, Theorem 6.7].) ∎

A.3 Besov spaces

Proposition A.6.

Let -<tτ< and 1<p,q,r,β<. Suppose that one from the following conditions holds:

  1. τ>t, τ-2/q>t-2/p.

  2. τ>t, τ-2/q=t-2/p, rβ.

  3. τ=t, pq, rβ.

Then Bτq,r(Ω)Btp,β(Ω).

Proof.

If condition (a) holds, then Bτq,r(Ω)Btp,β(Ω) by [56, Theorem 1.97]. If condition (b) holds, then Bτq,r(Ω)Btp,β(Ω) by [56, pp. 78–79]. If condition (c) holds, then Bτq,r(Ω)Btp,r(Ω)Btp,β(Ω) by [55, Section 3.3.1, Theorem] and [54, Section 4.6.1, Theorem]. ∎

A.4 Stokes system with prescribed pressure

Proposition A.7.

Let kN, 1<p,q<, Ω be of class Ck,1, 1/q<sk+1, s-1/qN0, 1/p<tk, t-1/pN0, and ts+1. Suppose that s+1-2/qt-2/p. Let gWt-1/p,p(Ω), hWs-1/q,q(Ω). Then there exists a unique solution (u,ρ)Wt,p(Ω,R2)×Ws,q(Ω) of the problem

-Δ𝐮+ρ=0,𝐮=0in Ω,𝐮𝝉Ω=g,ρ=hon Ω,

where 𝛕Ω=(n2Ω,-n1Ω) is the tangential vector on Ω. Moreover, Ma(u)Lp(Ω), Ma(ρ)Lq(Ω), and there exist non-tangential limits of u and ρ at almost all points of Ω.

Proof.

For s<k+1, see [36, Theorem 5.2]. The proof for s=k+1 is the same but we use the new embedding result Ws+1,q(Ω)Wt,p(Ω) (see [12, Theorem 3.8]). ∎

References

[1] H. Abboud, F. E. Chami and T. Sayah, A priori and a posteriori estimates for three-dimensional Stokes equations with nonstandard boundary conditions, Numer. Methods Partial Differential Equations 28 (2012), no. 4, 1178–1193. 10.1002/num.20676Search in Google Scholar

[2] H. Abboud, F. El Chami and T. Sayah, Error estimates for three-dimensional Stokes problem with non-standard boundary conditions, C. R. Math. Acad. Sci. Paris 349 (2011), no. 9–10, 523–528. 10.1016/j.crma.2011.03.021Search in Google Scholar

[3] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amsterdam) 140, Elsevier/Academic Press, Amsterdam, 2003. Search in Google Scholar

[4] M. Amara, E. Chacón Vera and D. Trujillo, Vorticity-velocity-pressure formulation for Stokes problem, Math. Comp. 73 (2004), no. 248, 1673–1697. 10.1090/S0025-5718-03-01615-6Search in Google Scholar

[5] C. Amrouche and M. Meslameni, Stokes problem with several types of boundary conditions in an exterior domain, Electron. J. Differential Equations 2013 (2013), Paper No. 196. Search in Google Scholar

[6] C. Amrouche, P. Penel and N. Seloula, Some remarks on the boundary conditions in the theory of Navier–Stokes equations, Ann. Math. Blaise Pascal 20 (2013), no. 1, 37–73. 10.5802/ambp.321Search in Google Scholar

[7] C. Amrouche and A. Rejaiba, 𝐋p-theory for Stokes and Navier–Stokes equations with Navier boundary condition, J. Differential Equations 256 (2014), no. 4, 1515–1547. 10.1016/j.jde.2013.11.005Search in Google Scholar

[8] C. Amrouche and N. E. H. Seloula, On the Stokes equations with the Navier-type boundary conditions, Differ. Equ. Appl. 3 (2011), no. 4, 581–607. 10.7153/dea-03-36Search in Google Scholar

[9] C. Amrouche and N. E. H. Seloula, Stokes equations and elliptic systems with nonstandard boundary conditions, C. R. Math. Acad. Sci. Paris 349 (2011), no. 11–12, 703–708. 10.1016/j.crma.2011.04.007Search in Google Scholar

[10] J. Bak and D. J. Newman, Complex Analysis, 2nd ed., Undergrad. Texts Math., Springer, New York, 1997. Search in Google Scholar

[11] C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40 (1972), 769–790. 10.1016/0022-247X(72)90019-4Search in Google Scholar

[12] A. Behzadan and M. Holst, Multiplication in Sobolev spaces, revisited, preprint (2015), https://arxiv.org/abs/1512.07379. 10.4310/ARKIV.2021.v59.n2.a2Search in Google Scholar

[13] J. M. Bernard, Non-standard Stokes and Navier–Stokes problems: Existence and regularity in stationary case, Math. Methods Appl. Sci. 25 (2002), no. 8, 627–661. 10.1002/mma.260Search in Google Scholar

[14] T. Z. Boulmezaoud, On the Stokes system and on the biharmonic equation in the half-space: An approach via weighted Sobolev spaces, Math. Methods Appl. Sci. 25 (2002), no. 5, 373–398. 10.1002/mma.296Search in Google Scholar

[15] J. H. Bramble and P. Lee, On variational formulations for the Stokes equations with nonstandard boundary conditions, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 7, 903–919. 10.1051/m2an/1994280709031Search in Google Scholar

[16] T. Clopeau, A. Mikelić and R. Robert, On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions, Nonlinearity 11 (1998), no. 6, 1625–1636. 10.1088/0951-7715/11/6/011Search in Google Scholar

[17] B. E. J. Dahlberg, D. S. Jerison and C. E. Kenig, Area integral estimates for elliptic differential operators with nonsmooth coefficients, Ark. Mat. 22 (1984), no. 1, 97–108. 10.1007/BF02384374Search in Google Scholar

[18] S. Delcourte and P. Omnes, A discrete duality finite volume discretization of the vorticity-velocity-pressure Stokes problem on almost arbitrary two-dimensional grids, Numer. Methods Partial Differential Equations 31 (2015), no. 1, 1–30. 10.1002/num.21890Search in Google Scholar

[19] R. A. DeVore and R. C. Sharpley, Besov spaces on domains in d, Trans. Amer. Math. Soc. 335 (1993), no. 2, 843–864. 10.1090/S0002-9947-1993-1152321-6Search in Google Scholar

[20] R. G. Durán and M. A. Muschietti, On the traces of W2,p(Ω) for a Lipschitz domain, Rev. Mat. Complut. 14 (2001), no. 2, 371–377. Search in Google Scholar

[21] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics Math., Springer, Berlin, 2001. 10.1007/978-3-642-61798-0Search in Google Scholar

[22] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics Appl. Math. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. 10.1137/1.9781611972030Search in Google Scholar

[23] R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307–322. 10.1090/S0002-9947-1968-0226044-7Search in Google Scholar

[24] D. S. Jerison and C. E. Kenig, An identity with applications to harmonic measure, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 447–451. 10.1090/S0273-0979-1980-14762-XSearch in Google Scholar

[25] A. Jonsson and H. Wallin, Function spaces on subsets of n, Math. Rep. 2 (1984), no. 1. Search in Google Scholar

[26] J. P. Kelliher, Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal. 38 (2006), no. 1, 210–232. 10.1137/040612336Search in Google Scholar

[27] C. E. Kenig, Weighted Hp spaces on Lipschitz domains, Amer. J. Math. 102 (1980), no. 1, 129–163. 10.2307/2374173Search in Google Scholar

[28] C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Reg. Conf. Ser. Math. 83, American Mathematical Society, Providence, 1994. 10.1090/cbms/083Search in Google Scholar

[29] M. Kohr and I. Pop, Viscous Incompressible Flow for Low Reynolds Numbers, Adv. Bound. Elem. 16, WIT Press, Southampton, 2004. Search in Google Scholar

[30] A. Kozhevnikov and O. Lepsky, Power series solutions to basic stationary boundary value problems of elasticity, Integral Equations Operator Theory 31 (1998), no. 4, 449–469. 10.1007/BF01228102Search in Google Scholar

[31] A. Kufner, O. John and S. Fučík, Function Spaces, Academia, 1977. Search in Google Scholar

[32] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod/Gauthier-Villars, Paris, 1969. Search in Google Scholar

[33] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl. 3, Oxford University Press, New York, 1996. Search in Google Scholar

[34] D. Medková, Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system, Acta Appl. Math. 116 (2011), no. 3, 281–304. 10.1007/s10440-011-9643-5Search in Google Scholar

[35] D. Medková, Transmission problem for the Brinkman system, Complex Var. Elliptic Equ. 59 (2014), no. 12, 1664–1678. 10.1080/17476933.2013.870563Search in Google Scholar

[36] D. Medková, One problem of the Navier type for the Stokes system in planar domains, J. Differential Equations 261 (2016), no. 10, 5670–5689. 10.1016/j.jde.2016.08.007Search in Google Scholar

[37] D. Medková, Lq-solution of the Neumann, Robin and transmission problem for the scalar Oseen equation, Math. Nachr. 291 (2018), no. 4, 682–698. 10.1002/mana.201600307Search in Google Scholar

[38] D. Medková, The Laplace Equation. Boundary Value Problems on Bounded and Unbounded Lipschitz Domains, Springer, Cham, 2018. 10.1007/978-3-319-74307-3_5Search in Google Scholar

[39] D. Mitrea, Layer potentials and Hodge decompositions in two dimensional Lipschitz domains, Math. Ann. 322 (2002), no. 1, 75–101. 10.1007/s002080100266Search in Google Scholar

[40] D. Mitrea and I. Mitrea, On the Besov regularity of conformal maps and layer potentials on nonsmooth domains, J. Funct. Anal. 201 (2003), no. 2, 380–429. 10.1016/S0022-1236(03)00086-7Search in Google Scholar

[41] D. Mitrea, M. Mitrea and S. Monniaux, The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains, Commun. Pure Appl. Anal. 7 (2008), no. 6, 1295–1333. 10.3934/cpaa.2008.7.1295Search in Google Scholar

[42] D. Mitrea, M. Mitrea and L. Yan, Boundary value problems for the Laplacian in convex and semiconvex domains, J. Funct. Anal. 258 (2010), no. 8, 2507–2585. 10.1016/j.jfa.2010.01.012Search in Google Scholar

[43] I. Mitrea and M. Mitrea, Multi-Layer Potentials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains, Lecture Notes in Math. 2063, Springer, Heidelberg, 2013. 10.1007/978-3-642-32666-0Search in Google Scholar

[44] M. Mitrea and M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque 344 (2012). Search in Google Scholar

[45] J. Neustupa, The steady Navier–Stokes problem with the inhomogeneous Navier-type boundary conditions in a 2D multiply-connected bounded domain, Analysis (Berlin) 35 (2015), no. 3, 201–212. 10.1515/anly-2014-1304Search in Google Scholar

[46] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. Search in Google Scholar

[47] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Duke University, Durham, 1976. Search in Google Scholar

[48] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 1992. 10.1017/CBO9780511624124Search in Google Scholar

[49] Y. Raudin, On a generalized Stokes system with slip boundary conditions in the half-space, Hiroshima Math. J. 41 (2011), no. 2, 179–209. 10.32917/hmj/1314204561Search in Google Scholar

[50] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University Press, Princeton, 1970. 10.1515/9781400883882Search in Google Scholar

[51] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the assistance of Timothy S. Murphy, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993. 10.1515/9781400883929Search in Google Scholar

[52] N. Tanaka, On the boundary value problem for the stationary Stokes system in the half-space, J. Differential Equations 115 (1995), no. 1, 70–74. 10.1006/jdeq.1995.1004Search in Google Scholar

[53] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital. 3, Springer, Berlin, 2007. Search in Google Scholar

[54] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. Search in Google Scholar

[55] H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983. 10.1007/978-3-0346-0416-1Search in Google Scholar

[56] H. Triebel, Theory of Function Spaces. III, Monogr. Math. 100, Birkhäuser, Basel, 2006. Search in Google Scholar

[57] R. Verfürth, Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition, Numer. Math. 50 (1987), no. 6, 697–721. 10.1007/BF01398380Search in Google Scholar

Received: 2018-06-06
Revised: 2019-05-30
Accepted: 2019-11-25
Published Online: 2020-01-17
Published in Print: 2020-03-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/anly-2018-0035/html
Scroll to top button