Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production and cryopreservation of definitive endoderm from human pluripotent stem cells under defined and scalable culture conditions

Abstract

The endodermal germ layer gives rise to respiratory epithelium, hepatocytes, pancreatic cells and intestinal lineages, among other cell types. These lineages can be differentiated from human pluripotent stem cells (hPSCs) via a common definitive endoderm (DE) intermediate that is characterized by the co-expression of the cell surface markers CXCR4, c-KIT and EPCAM and the transcription factors SOX17 and FOXA2. Here we provide a detailed protocol for mass production of DE from hPSCs in scalable and easy-to-handle suspension culture using a rotating Erlenmeyer flask or a sophisticated, fully controllable, 150-ml stirred tank bioreactor. This protocol uses two different media formulations that are chemically defined and xeno free and therefore good manufacturing practice ready. Our protocol allows for efficient hPSC-derived DE specification in multicellular aggregates within 3 days and generates up to 1 × 108 DE cells with >92% purity in one differentiation batch when using the bioreactor. The hPSC-derived DE cells that are generated can be cryopreserved for later downstream differentiation into various endodermal lineages. This protocol should facilitate the flexible production of mature DE derivatives for physiologically relevant disease models, high-throughput drug screening, toxicology testing and cellular therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of hPSC-scalable DE differentiation.
Fig. 2: Morphology of hPSCs in 2D culture.
Fig. 3: Morphology of cell aggregates during DE differentiation.
Fig. 4: Gating strategy and analysis of DE marker expression by flow cytometry.

Similar content being viewed by others

Data availability

Data regarding cell viability are included as Supplementary Data. The other data presented here were previously published and are available in the original publication13.

References

  1. Dianat, N., Steichen, C., Vallier, L., Weber, A. & Dubart-Kupperschmitt, A. Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr. Gene Ther. 13, 120–132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hohwieler, M. et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 66, 473–486 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Mithal, A. et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat. Commun. 11, 215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Snoeck, H. W. Modeling human lung development and disease using pluripotent stem cells. Development 142, 13–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Carpentier, A. et al. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen. Stem Cell Res. 16, 640–650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sirenko, O. et al. Phenotypic characterization of toxic compound effects on liver spheroids derived from iPSC using confocal imaging and three-dimensional image analysis. Assay Drug Dev. Technol. 14, 381–394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yiangou, L., Ross, A. D. B., Goh, K. J. & Vallier, L. Human pluripotent stem cell-derived endoderm for modeling development and clinical applications. Cell Stem Cell 22, 485–499 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Zuba-Surma, E. K., Wojakowski, W., Madeja, Z. & Ratajczak, M. Z. Stem cells as a novel tool for drug screening and treatment of degenerative diseases. Curr. Pharm. Des. 18, 2644–2656 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Elitt, M. S., Barbar, L. & Tesar, P. J. Drug screening for human genetic diseases using iPSC models. Hum. Mol. Genet. 27, R89–R98 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yabe, S. G. et al. Induction of functional islet-like cells from human iPS cells by suspension culture. Regen. Ther. 10, 69–76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, S. et al. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Res. 30, 95–97 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sahabian et al. Chemically-defined, xeno-free, scalable production of hPSC-derived definitive endoderm aggregates with multi-lineage differentiation potential. Cells 8, 1571 (2019).

  13. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kuo, H. H. et al. Negligible-cost and weekend-free chemically defined human iPSC culture. Stem Cell Rep. 14, 256–270 (2020).

    Article  CAS  Google Scholar 

  15. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Hannan, N. R., Segeritz, C. P., Touboul, T. & Vallier, L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat. Protoc. 8, 430–437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, G., Chambers, S. M., Tomishima, M. J. & Studer, L. Derivation of neural crest cells from human pluripotent stem cells. Nat. Protoc. 5, 688–701 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Gerecht-Nir, S., Cohen, S. & Itskovitz-Eldor, J. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng. 86, 493–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kempf, H., Kropp, C., Olmer, R., Martin, U. & Zweigerdt, R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat. Protoc. 10, 1345–1361 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Olmer, R. et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng. Part C Methods 18, 772–784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amit, M. et al. Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev. Rep. 6, 248–259 (2010).

    Article  PubMed  Google Scholar 

  23. Olmer, R. et al. Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res. 5, 51–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Singh, H., Mok, P., Balakrishnan, T., Rahmat, S. N. & Zweigerdt, R. Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res. 4, 165–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Zweigerdt, R., Olmer, R., Singh, H., Haverich, A. & Martin, U. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6, 689–700 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Kropp, C. et al. Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cells Transl. Med. 5, 1289–1301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kempf, H. et al. Bulk cell density and Wnt/TGFβ signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat. Commun. 7, 13602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ackermann, M. et al. Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat. Commun. 9, 5088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Farzaneh, Z., Najarasl, M., Abbasalizadeh, S., Vosough, M. & Baharvand, H. Developing a cost-effective and scalable production of human hepatic competent endoderm from size-controlled pluripotent stem cell aggregates. Stem Cells Dev. 27, 262–274 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Olmer, R. et al. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Reports 10, 1657–1672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Palakkan, A. A., Nanda, J. & Ross, J. A. Human induced pluripotent stem cell-derived definitive endoderm bulk culture and hepatic differentiation. Methods Mol. Biol. 1994, 41–53 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Sui, L., Leibel, R. L. & Egli, D. Pancreatic beta cell differentiation from human pluripotent stem cells. Curr. Protoc. Hum. Genet. 99, e68 (2018).

    Article  PubMed  Google Scholar 

  33. Wong, A. P. et al. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat. Protoc. 10, 363–381 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Hawkins, F. et al. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Investig. 127, 2277–2294 (2017).

    Article  PubMed  Google Scholar 

  35. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Merkert, S. et al. High-throughput screening for modulators of CFTR activity based on genetically engineered cystic fibrosis disease-specific iPSCs. Stem Cell Rep. 12, 1389–1403 (2019).

    Article  CAS  Google Scholar 

  37. Nie, Y. Z. et al. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine 35, 114–123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Porotto, M. et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio 10, 1–13 (2019).

    Article  Google Scholar 

  39. Iansante, V., Chandrashekran, A. & Dhawan, A. Cell-based liver therapies: past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 1750 (2018).

    Article  Google Scholar 

  40. McLean, A. B. et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25, 29–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Diekmann, U. et al. Chemically defined and xenogeneic-free differentiation of human pluripotent stem cells into definitive endoderm in 3D culture. Sci. Rep. 9, 996 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yabe, S. G. et al. Definitive endoderm differentiation is promoted in suspension cultured human iPS-derived spheroids more than in adherent cells. Int. J. Dev. Biol. 63, 271–280 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Abecasis, B. et al. Expansion of 3D human induced pluripotent stem cell aggregates in bioreactors: bioprocess intensification and scaling-up approaches. J. Biotechnol. 246, 81–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Shinohara, M. et al. Endodermal differentiation of human induced pluripotent stem cells using simple dialysis culture system in suspension culture. Regen. Ther. 12, 14–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lock, L. T. & Tzanakakis, E. S. Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng. Part A 15, 2051–2063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park, Y., Chen, Y., Ordovas, L. & Verfaillie, C. M. Hepatic differentiation of human embryonic stem cells on microcarriers. J. Biotechnol. 174, 39–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Schlegelberger, B. et al. Clinicopathogenetic significance of chromosomal abnormalities in patients with blastic peripheral B-cell lymphoma. Kiel–Wien–Lymphoma Study Group. Blood 94, 3114–3120 (1999).

    CAS  PubMed  Google Scholar 

  48. Drick, N. et al. Generation of a NKX2.1 - p63 double transgenic knock-in reporter cell line from human induced pluripotent stem cells (MHHi006-A-4). Stem Cell Res. 42, 101659 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Sullivan, S. et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen. Med. 13, 859–866 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lavon, N., Zimerman, M. & Itskovitz-Eldor, J. Scalable expansion of pluripotent stem cells. Adv. Biochem. Eng. Biotechnol. 163, 23–37 (2018).

    CAS  PubMed  Google Scholar 

  51. Davis, B. M., Loghin, E. R., Conway, K. R. & Zhang, X. Automated closed-system expansion of pluripotent stem cell aggregates in a rocking-motion bioreactor. SLAS Technol. 23, 364–373 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Sgodda, M. et al. A scalable approach for the generation of human pluripotent stem cell-derived hepatic organoids with sensitive hepatotoxicity features. Stem Cells Dev. 26, 1490–1504 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844–857 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sart, S., Ma, T. & Li, Y. Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation. Biotechnol. Prog. 29, 143–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Haase, A., Gohring, G. & Martin, U. Generation of non-transgenic iPS cells from human cord blood CD34+ cells under animal component-free conditions. Stem Cell Res. 21, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Zweigerdt group, especially C. Halloin and W. Löbel, for help and suggestions regarding the experimental setup of the bioreactor. We also thank T. Scheper for providing bFGF and A. Kirschning and G. Dräger for providing CHIR99021. Parts of Fig. 1 were created using Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported License. This research was funded by the German Center for Lung Research (DZL, BREATH 82DZL002A1) and Federal State of Lower Saxony R2N (74ZN1574).

Author information

Authors and Affiliations

Authors

Contributions

A.S. conceptualized and performed all experiments and analysis. A.S., J.D., R.O. and U.M. wrote the manuscript. R.O. and U.M. conceptualized and supervised the project and provided project administration and funding acquisition. All authors approved the final manuscript.

Corresponding authors

Correspondence to Ulrich Martin or Ruth Olmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Sahabian, A. et al. Cells 8, 1571 (2019): https://doi.org/10.3390/cells8121571

Key data used in this protocol

Sahabian, A. et al. Cells 8, 1571 (2019): https://doi.org/10.3390/cells8121571

Supplementary information

Supplementary Data

Source data for cell viability results are included in the ‘Anticipated Results’ section. Cell viability was assessed by Beckman Coulter Vi-CELL X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahabian, A., Dahlmann, J., Martin, U. et al. Production and cryopreservation of definitive endoderm from human pluripotent stem cells under defined and scalable culture conditions. Nat Protoc 16, 1581–1599 (2021). https://doi.org/10.1038/s41596-020-00470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00470-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research