Skip to main content
Log in

Investigation of microwave drying on quality attributes, sensory properties and surface structure of bee pollen grains by scanning electron microscopy

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The primary objective of this work was to investigate microwave drying behaviour of bee pollen grains, and study the effect of microwave drying on quality, physicochemical properties, sensory characteristics and morphological structure of the bee pollen. Bee pollen samples were dried at 180, 360, 540, 720 and 900 W microwave power levels. Drying kinetics of the bee pollen samples during microwave drying were investigated, and protein, fat, ash, carbohydrate, vitamin C, solubility and colour of dried bee pollen samples were evaluated. Scanning electron microscopy (SEM) images of fresh and microwave dried bee pollens were obtained, and their organoleptic properties were evaluated by panellists. Effective moisture diffusivity (Deff) values ranged from 0.04 × 10−8 to 1.14 × 10−8 m2/s, and the activation energy (Ea) was found to be 71.68 W/g. Drying time was shortened by 94% when the microwave power level was increased from 180 to 900 W. Protein, fat, total carbohydrates, vitamin C and colour values of bee pollen were affected by the microwave power level. Microwave power level was an important parameter for the colour change. The lowest ΔE value and the highest solubility (%) were obtained for bee pollen microwave dried at 180 W power level. Morphological changes were observed in microwave dried bee pollen grains. By comparing all the physicochemical properties and organoleptic characteristics of microwave dried bee pollens, the bee pollen dried at 180 W microwave power level was found to retain its quality attributes better than the other microwave dried bee pollens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Harahsheh M, Al-Muhtaseb AH, Magee TRA (2009) Microwave drying kinetics of tomato pomace: effect of osmotic dehydration. Chem Eng Process 48:524–531

    Article  CAS  Google Scholar 

  • Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM (2005) Chemical composition and botanical evaluation of dried bee pollen pellet. J Food Compos Anal 18:105–111

    Article  CAS  Google Scholar 

  • AOAC (2005) Official methods of analysis, 18th edn. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  • Baomeng Z, Xuesen W, Guodong W (2014) Effect of pre-treatments on drying characteristics of Chinese jujube (Zizyphus jujuba Miller). Int J Agric Biol Eng 7:94–101

    Google Scholar 

  • Barajas J, Cortes-Rodriguez M, Rodriguez-Sandoval E (2012) Effect of temperature on the drying process of bee pollen from two zones of Colombia. J Food Process Eng 35:134–148

    Article  Google Scholar 

  • Bayram NE (2019) Quality evaluation and pollen profile of honey samples from different locations. Prog Nutr 21:928–934

    CAS  Google Scholar 

  • Béttega R, Rosa JG, Corrêa RG, Freire JT (2014) Comparison of carrot (Daucus carota) drying in microwave and in vacuum microwave. Braz J Chem Eng 31:403–412

    Article  Google Scholar 

  • Bonvehí JS, Jordà RE, (1997) Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. J Agric Food Chem 45:725–732

    Article  Google Scholar 

  • Borel LDMS, Marques LG, Prado MM (2020) Performance evaluation of an infrared heating-assisted fluidized bed dryer for processing bee-pollen grains. Chem Eng Process 155:108044

    Article  CAS  Google Scholar 

  • Canale A, Benelli G, Castagna A, Sgherri C, Poli P, Serra A, Mele M, Ranieri A, Signorini F, Bientinesi M, Nicolella C (2016) Microwave-assisted drying for the conservation of honeybee pollen. Materials 9:363

    Article  PubMed Central  Google Scholar 

  • Cao Z, Zhou L, Bi J, Yi J, Chen Q, Wu X, Zheng J, Li S (2016) Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study. J Sci Food Agric 96:3596–3603

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing—a review. Food Res Int 52:243–261

    Article  CAS  Google Scholar 

  • Conte G, Benelli G, Serra A, Signorini F, Bientinesi M, Nicolella C, Mele M, Canale A (2017) Lipid characterization of chestnut and willow honeybee-collected pollen: Impact of freeze-drying and microwave-assisted drying. J Food Comp Anal 55:12–19

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  • Dadali G, Ozbek B (2009) Kinetic thermal degradation of vitamin C during microwave drying of okra and spinach. Int J Food Sci Nutr 60:21–31

    Article  CAS  PubMed  Google Scholar 

  • Dadali G, Demirhan E, Ozbek B (2007) Color change kinetics of spinach undergoing microwave drying. Dry Technol 25:1713–1723

    Article  Google Scholar 

  • Darvishi H (2017) Quality, performance analysis, mass transfer parameters and modeling of drying kinetics of soybean. Braz J Chem Eng 34:143–158

    Article  CAS  Google Scholar 

  • De-Melo AAM, Estevinho MLMF, Sattler JAG, Souza BR, Freitas AS, Barth OM, Almeida-Muradian LB (2016) Effect of processing conditions on characteristics of dehydrated bee-pollen and correlation between quality parameters. LWT Food Sci Technol 65:808–815

    Article  Google Scholar 

  • Demiray E, Seker A, Tulek Y (2017) Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Trans 53:1817–1827

    Article  CAS  Google Scholar 

  • Denisow B, Denisow-Pietrzyk M (2016) Biological and therapeutic properties of bee pollen: a review. J Sci Food Agric 96:4303–4309

    Article  CAS  PubMed  Google Scholar 

  • Dhalsamant K, Tripathy PP, Shrivastava SL (2018) Effect of sodium metabisulfite pretreatment on micrographs, surface roughness and X-ray diffraction analyses of solar dried potato cylinders. Innov Food Sci Emerg Technol 47:399–411

    Article  CAS  Google Scholar 

  • Dias LG, Tolentino G, Pascoal A, Estevinho LM (2016) Effect of processing conditions on the bioactive compounds and biological properties of bee pollen. J Apic Res 55:357–365

    Article  Google Scholar 

  • Doymaz I (2018) Infrared drying of kiwifruit slices. Int J Green Energ 15:622–628

    Article  CAS  Google Scholar 

  • Doymaz I, Kipcak AS, Piskin S (2015) Microwave drying of green bean slices: drying kinetics and physical quality. Czech J Food Sci 33:367–376

    Article  Google Scholar 

  • Estevinho LM, Rodrigues S, Pereira AP, Feás X (2012) Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. Int J Food Sci Technol 47:429–435

    Article  CAS  Google Scholar 

  • Evin D (2012) Thin layer drying kinetics of Gundelia tournefortii L. Food Bioprod Proces 90:323–332

    Article  Google Scholar 

  • Fernandes FAN, Rodrigues S, Law CL, Mujumdar AS (2011) Drying of exotic tropical fruits: a comprehensive review. Food Bioproc Technol 4:163–185

    Article  Google Scholar 

  • Gaukel V, Siebert T, Erle U (2017). In: Regier M, Knoerzer K, Schubert H (eds) The microwave processing of foods, 2nd edn. Woodhead Publishing, Duxford

    Google Scholar 

  • Haghi AK, Amanifard N (2008) Analysis of heat and mass transfer during microwave drying of food products. Braz J Chem Eng 25:491–501

    Article  CAS  Google Scholar 

  • Isik A, Ozdemir M, Doymaz I (2019a) Effect of hot air drying on quality characteristics and physicochemical properties of bee pollen. Food Sci Technol 39:224–231

    Article  Google Scholar 

  • Isik A, Ozdemir M, Doymaz I (2019b) Infrared drying of bee pollen: effects and impacts on food components. Czech J Food Sci 37:69–74

    Article  CAS  Google Scholar 

  • Jiang H, Zhang M, Mujumdar AS, Lim RX (2014) Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. J Sci Food Agric 94:1827–1834

    Article  CAS  PubMed  Google Scholar 

  • Khraisheh MAM, McMinn WAM, Magee TRA (2004) Quality and structural changes in starchy foods during microwave and convective drying. Food Res Int 37:497–503

    Article  CAS  Google Scholar 

  • Kostić AŽ, Milinčić DD, Barać MB, Shariati MA, Tešič ŽL, Pešić MB (2020) The application of pollen as a functional food and feed ingredient—the present and perspectives. Biomolecules 10:84

    Article  PubMed Central  Google Scholar 

  • Kouhila M, Moussaoui H, Bahammou Y, Tagnamas Z, Lamsyehe H, Lamharrar A, Idlimam A (2020) Exploring drying kinetics and energy exergy performance of Mytilus Chilensis and Dosidicus gigas undergoing microwave treatment. Heat Mass Trans 56:2985–2999

    Article  CAS  Google Scholar 

  • Li QQ, Wang K, Marcucci MC, Sawaya ACHF, Hu L, Xue XF, Wu LM, Hu FL (2018) Nutrient-rich bee pollen: a treasure trove of active natural metabolites. J Funct Food 49:472–484

    Article  CAS  Google Scholar 

  • Manjarres-Pinzon K, Cortes-Rodriguez M, Rodríguez-Sandoval E (2013) Effect of drying conditions on the physical properties of impregnated orange peel. Braz J Chem Eng 30:667–676

    Article  Google Scholar 

  • Meilgaard MC, Civille CV, Carr BT (2016) Sensory evaluation techniques. CRC Press, Boca Raton

    Google Scholar 

  • Mireles-Arriaga AI, Ruiz-López II, Hernández-García PA, Espinosa-Ayala E, López-Martínez LX, Márquez-Molina O (2016) The impact of convective drying on the color, phenolic content and antioxidant capacity of noni (Morinda citrifolia L.). Food Sci Technol 36:583–590

    Article  Google Scholar 

  • Ojha KS, Kerry JP, Tiwari BK (2017) Investigating the influence of ultrasound pre-treatment on drying kinetics and moisture migration measurement in Lactobacillus sakei cultured and uncultured beef jerky. LWT Food Sci Technol 81:42–49

    Article  CAS  Google Scholar 

  • Panagiotou NM, Krokida MK, Maroulis ZB, Saravacos GD (2004) Moisture diffusivity: Literature data compilation for foodstuffs. Int J Food Prop 7:273–299

    Article  Google Scholar 

  • Pelletier S, Tremblay GF, Bertrand A, Bélanger G, Castonguay Y, Michaud R (2010) Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim Feed Sci Technol 157:139–150

    Article  CAS  Google Scholar 

  • Phukasmas P, Songsermpong S (2019) Instant rice process development: effect of rice cooking methods on the quality of Jasmine instant rice dried by industrial microwave oven. J Microbiol Biotechnol Food Sci 9:330–334

    Article  CAS  Google Scholar 

  • Ranieri A, Benelli G, Castagna A, Sgherri C, Signorini F, Bientinesi M, Nicolella C, Canale A (2019) Freeze-drying duration influences the amino acid and rutin content in honeybee-collected chestnut pollen. Saudi J Biol Sci 26:252–255

    Article  CAS  PubMed  Google Scholar 

  • Rayaguru K, Routray W, Mohanty SN (2011) Mathematical modeling and quality parameters of air-dried betel leaf (Piper Betle L.). J Food Process Preserv 35:394–401

    Article  Google Scholar 

  • Rebelo KS, Ferreira AG, Carvalho-Zilse GA (2016) Physicochemical characteristics of pollen collected by Amazonian stingless bees. Cienc Rural 46:927–932

    Article  CAS  Google Scholar 

  • Reis RC, Castro VC, Devilla IA, Oliveria CA, Barbosa LS, Rodovalho R (2013) Effect of drying temperature on the nutritional and antioxidant qualities of cumari peppers from Pará (Capsicum chinense Jacqui). Braz J Chem Eng 30:337–343

    Article  CAS  Google Scholar 

  • Rzepecka-Stojko A, Pilawa B, Ramos P, Stojko J (2012) Antioxidative properties of bee pollen extracts examined by EPR spectroscopy. J Apic Sci 56:23–31

    Google Scholar 

  • Schulte F, Lingott J, Panne U, Kneipp J (2008) Chemical characterization and classification of pollen. Anal Chem 80:9551–9556

    Article  CAS  PubMed  Google Scholar 

  • Shewale SR, Rajoriya D, Hebbar HU (2019) Low humidity air drying of apple slices: Effect of EMR pretreatment on mass transfer parameters, energy efficiency and quality. Innov Food Sci Emerg Technol 55:1–10

    Article  CAS  Google Scholar 

  • Silva MG, Celeghini RMS, Silva MA (2018) Effect of ethanol on the drying characteristics and on the coumarin yield of dried guaco leaves (Mikania laevigata Schultz Bip. ex baker). Braz J Chem Eng 35:1095–1104

    Article  CAS  Google Scholar 

  • Soni A, Smith J, Thompson A, Brightwell G (2020) Microwave-induced thermal sterilization—a review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends Food Sci Tech 97:433–442

    Article  CAS  Google Scholar 

  • Spulber R, Doğaroğlu M, Băbeanu N, Popa O (2018) Physicochemical characteristics of fresh bee pollen from different botanical origins. Rom Biotech Lett 23:13357–13365

    CAS  Google Scholar 

  • Thakur M, Nanda V (2018) Assessment of physico-chemical properties, fatty acid, amino acid and mineral profile of bee pollen from India with a multivariate perspective. J Food Nutr Res 57:328–340

    CAS  Google Scholar 

  • Thakur M, Nanda V (2020a) Composition and functionality of bee pollen: a review. Trends Food Sci Tech 98:82–106

    Article  CAS  Google Scholar 

  • Thakur M, Nanda V (2020b) Exploring the physical, functional, thermal, and textural properties of bee pollen from different botanical origins of India. J Food Process Eng 43:e12935

    Article  Google Scholar 

  • Veras AOM, Béttega R, Freire FB, Barrozo MAS, Freire JT (2012) Drying kinetics, structural characteristics and vitamin C retention of dedo-de-moça pepper (Capsicum baccatum) during convective and freeze drying. Braz J Chem Eng 29:741–750

    Article  CAS  Google Scholar 

  • Wang Z, Sun J, Chen F, Liao X, Hu X (2007) Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J Food Eng 80:536–544

    Article  Google Scholar 

  • Węglińska M, Szostak R, Kita A, Nemś A, Mazurek S (2020) Determination of nutritional parameters of bee pollen by Raman and infrared spectroscopy. Talanta 212:120790

    Article  PubMed  Google Scholar 

  • Wojdyło A, Figiel A, Legua P, Lech K, Carbonell-Barrachina ÁA, Hernández F (2016) Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chem 207:170–179

    Article  PubMed  Google Scholar 

  • Yang K, Wu D, Ye X, Liu D, Chen J, Sun PL (2013) Characterization of chemical composition of bee pollen in China. J Agric Food Chem 61:708–718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gebze Technical University and Yildiz Technical University for providing laboratory equipment in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ozdemir.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest and no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isik, A., Ozdemir, M. & Doymaz, I. Investigation of microwave drying on quality attributes, sensory properties and surface structure of bee pollen grains by scanning electron microscopy. Braz. J. Chem. Eng. 38, 177–188 (2021). https://doi.org/10.1007/s43153-020-00088-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00088-w

Keywords

Navigation