Skip to main content
Log in

Empirical Model of 10 – 130 MeV Solar Energetic Particle Spectra at 1 AU Based on Coronal Mass Ejection Speed and Direction

  • Published:
Solar Physics Aims and scope Submit manuscript

A Correction to this article was published on 08 March 2021

This article has been updated

Abstract

We present a new empirical model to predict solar energetic particle (SEP) event-integrated and peak intensity spectra between 10 and 130 MeV at 1 AU, based on multi-point spacecraft measurements from the Solar TErrestrial RElations Observatory (STEREO), the Geostationary Operational Environmental Satellites (GOES), and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment. The analyzed data sample includes 32 SEP events occurring between 2010 and 2014, with a statistically significant proton signal at energies in excess of a few tens of MeV, unambiguously recorded at three spacecraft locations. The spatial distributions of SEP intensities are reconstructed by assuming an energy-dependent 2D Gaussian functional form, and accounting for the correlation between the intensity and the speed of the parent coronal mass ejection (CME), and the magnetic-field-line connection angle. The CME measurements used are from the Space Weather Database Of Notifications, Knowledge, Information (DONKI). The model performance, including its extrapolations to lower/higher energies, is tested by comparing with the spectra of 20 SEP events not used to derive the model parameters. Despite the simplicity of the model, the observed and predicted event-integrated and peak intensities at Earth and at the STEREO spacecraft for these events show remarkable agreement, both in the spectral shapes and their absolute values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Change history

References

  • Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carlson, P., Casolino, M., Castellini, G., De Santis, C., Di Felice, V., Galper, A.M., Karelin, A.V., Koldashov, S.V., Koldobskiy, S., Krutkov, S.Y., Kvashnin, A.N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A.G., Menn, W., Mergè, M., Mikhailov, V.V., Mocchiutti, E., Monaco, A., Munini, R., Mori, N., Osteria, G., Panico, B., Papini, P., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S.B., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y.I., Vacchi, A., Vannuccini, E., Vasilyev, G., Voronov, S.A., Yurkin, Y.T., Zampa, G., Zampa, N.: 2017, Ten years of PAMELA in space. Riv. Nuovo Cimento 40, 473. DOI.

    Article  Google Scholar 

  • Bruno, A.: 2017, Calibration of the GOES 13/15 high-energy proton detectors based on the PAMELA solar energetic particle observations. Space Weather 15, 1191. DOI.

    Article  ADS  Google Scholar 

  • Bruno, A., Bazilevskaya, G.A., Boezio, M., Christian, E.R., de Nolfo, G.A., Martucci, M., Merge’, M., Mikhailov, V.V., Munini, R., Richardson, I.G., Ryan, J.M., Stochaj, S., Adriani, O., Barbarino, G.C., Bellotti, R., Bogomolov, E.A., Bongi, M., Bonvicini, V., Bottai, S., Cafagna, F., Campana, D., Carlson, P., Casolino, M., Castellini, G., Santis, C.D., Felice, V.D., Galper, A.M., Karelin, A.V., Koldashov, S.V., Koldobskiy, S., Krutkov, S.Y., Kvashnin, A.N., Leonov, A., Malakhov, V., Marcelli, L., Mayorov, A.G., Menn, W., Mocchiutti, E., Monaco, A., Mori, N., Osteria, G., Panico, B., Papini, P., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S.B., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y.I., Vacchi, A., Vannuccini, E., Vasilyev, G.I., Voronov, S.A., Yurkin, Y.T., Zampa, G., Zampa, N.: 2018, Solar energetic particle events observed by the PAMELA mission. Astrophys. J. 862, 97. DOI.

    Article  ADS  Google Scholar 

  • Bruno, A., Christian, E.R., de Nolfo, G.A., Richardson, I.G., Ryan, J.M.: 2019, Spectral analysis of the September 2017 solar energetic particle events. Space Weather 17, 419. DOI.

    Article  ADS  Google Scholar 

  • Cane, H.V., Reames, D.V., von Rosenvinge, T.T.: 1988, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93, 9555. DOI.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997–2006: Their composition and associations. J. Geophys. Res. 115, A08101. DOI.

    Article  ADS  Google Scholar 

  • Caprioli, D., Spitkovsky, A.: 2014, Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys. J. 783, 91. DOI.

    Article  ADS  Google Scholar 

  • Cliver, E.W.: 2006, The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys. J. 639, 1206. DOI.

    Article  ADS  Google Scholar 

  • Cohen, C.M.S., Mason, G.M., Mewaldt, R.A.: 2017, Characteristics of solar energetic ions as a function of longitude. Astrophys. J. 843, 132. DOI.

    Article  ADS  Google Scholar 

  • Cucinotta, F.A., Hu, S., Schwadron, N.A., Kozarev, K., Townsend, L.W., Kim, M.-H.Y.: 2010, Space radiation risk limits and Earth-Moon-Mars environmental models. Space Weather 8, S00E09. DOI.

    Article  Google Scholar 

  • Dalla, S., Agueda, N.: 2010, Role of latitude of source region in solar energetic particle events. In: Maksimovic, M., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) 20th Internat. Solar Wind Conf. CP-1216, American Institute of Physics, Melville, 613. DOI.

    Chapter  Google Scholar 

  • Dalla, S., Marsh, M.S., Battarbee, M.: 2017, Solar energetic particle drifts and the energy dependence of 1 au charge states. Astrophys. J. 834, 167. DOI.

    Article  ADS  Google Scholar 

  • Dalla, S., Marsh, M.S., Kelly, J., Laitinen, T.: 2013, Solar energetic particle drifts in the Parker spiral. J. Geophys. Res. 118, 5979. DOI.

    Article  Google Scholar 

  • de Nolfo, G.A., Bruno, A., Ryan, J.M., Dalla, S., Giacalone, J., Richardson, I.G., Christian, E.R., Stochaj, S.J., Bazilevskaya, G.A., Boezio, M., Martucci, M., Mikhailov, V.V., Munini, R.: 2019, Comparing long-duration gamma-ray flares and high-energy solar energetic particles. Astrophys. J. 879, 90. DOI.

    Article  ADS  Google Scholar 

  • Desai, M.I., Giacalone, J.: 2016, Large gradual solar energetic particle events. Liv. Rev. Solar Phys. 13, 3. DOI.

    Article  ADS  Google Scholar 

  • Desai, M.I., Mason, G.M., Gold, R.E., Krimigis, S.M., Cohen, C.M.S., Mewaldt, R.A., Mazur, J.E., Dwyer, J.R.: 2006, Heavy-ion elemental abundances in large solar energetic particle events and their implications for the seed population. Astrophys. J. 649, 470. DOI.

    Article  ADS  Google Scholar 

  • Desai, M.I., Mason, G.M., Dayeh, M.A., Ebert, R.W., Mccomas, D.J., Li, G., Cohen, C.M.S., Mewaldt, R.A., Schwadron, N.A., Smith, C.W.: 2016, Spectral properties of large gradual solar energetic particle events. I. Fe, O, and seed material. Astrophys. J. 816, 68. DOI.

    Article  ADS  Google Scholar 

  • Ding, L., Jiang, Y., Zhao, L., Li, G.: 2013, The “twin-CME” scenario and large solar energetic particle events in solar cycle 23. Astrophys. J. 763, 30. DOI.

    Article  ADS  Google Scholar 

  • Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.-A., Gibbs, M., Burnett, C.: 2017, The economic impact of space weather: Where do we stand? Risk Anal. 37, 206. DOI.

    Article  Google Scholar 

  • Ellison, D.C., Ramaty, R.: 1985, Shock acceleration of electrons and ions in solar flares. Astrophys. J. 298, 400. DOI.

    Article  ADS  Google Scholar 

  • Giacalone, J., Jokipii, J.R.: 2012, The longitudinal transport of energetic ions from impulsive solar flares in interplanetary space. Astrophys. J. Lett. 751, 33. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P.: 2014, Latitudinal connectivity of ground level enhancement events. In: Hu, Q., Zank, G.P. (eds.) Outstanding Problems in Heliophysics: From Coronal Heating to the Edge of the Heliosphere CS-484, Astron. Soc. Pacific, San Francisco, 63. ADS.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Krucker, S.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michałek, G., Kaiser, M.L., Howard, R.A., Reames, D.V., Leske, R., von Rosenvinge, T.: 2002, Interacting coronal mass ejections and solar energetic particles. Astrophys. J. Lett. 572, 103. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Yashiro, S., Usoskin, I.: 2005, Coronal mass ejections and ground level enhancements. In: Acharya, B.S., Gupta, S., Jagadeesan, P., Jain, A., Karthikeyan, S., Morris, S., Tonwar, S. (eds.) Proc. 29th Internat. Cosmic Ray Conf., Internat. Cosmic Ray Conf. 1, Tata Institute of Fundamental Research, Mumbai, 169. ADS.

    Google Scholar 

  • Gopalswamy, N., Xie, H., Akiyama, S., Yashiro, S., Usoskin, I.G., Davila, J.M.: 2013, The first ground level enhancement event of solar cycle 24: Direct observation of shock formation and particle release heights. Astrophys. J. Lett. 765, 30. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P.A., Yashiro, S.: 2014, Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planets Space 66, 104. DOI.

    Article  ADS  Google Scholar 

  • Ippolito, A., Pommois, P., Zimbardo, G., Veltri, P.: 2005, Magnetic connection from the Earth to the solar corona, flare positions and solar energetic particle observations. Astron. Astrophys. 438, 705. DOI.

    Article  ADS  Google Scholar 

  • Jokipii, J.R.: 1966, Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 2001, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947. DOI.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Hildner, E., Van Hollebeke, M.A.I.: 1978, Prompt solar proton events and coronal mass ejections. Solar Phys. 57, 429. DOI.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Reames, D.V., Burkepile, J.T.: 2000, A role for ambient energetic particle intensities in shock acceleration of solar energetic particles. In: Ramaty, R., Mandzhavidze, N. (eds.) High Energy Solar Phys. Workshop - Anticipating HESSI CS-206, Astron. Soc. Pacific, San Francisco, 468. ADS.

    Google Scholar 

  • Kahler, S.W., Vourlidas, A.: 2005, Fast coronal mass ejection environments and the production of solar energetic particle events. J. Geophys. Res. 110, A12S01. DOI.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Sheeley, N.R. Jr., Howard, R.A., Koomen, M.J., Michels, D.J., McGuire, R.E., von Rosenvinge, T.T., Reames, D.V.: 1984, Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683. DOI.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Cliver, E.W., Cane, H.V., McGuire, R.E., Reames, D.V., Sheeley, N.R. Jr., Howard, R.A.: 1987, Solar energetic proton events and coronal mass ejections near solar minimum. In: Kozyarivsky, V.A., Lidvanskij, A.S., Tulupova, T.I., Tsyabuk, A.L., Voevodskij, A.V., Volgemut, N.S. (eds.) Proc. 20th Internat. Cosmic Ray Conf., Internat. Cosmic Ray Conf. 3, Nauka, Moscow, 121. ADS.

    Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI.

    Article  ADS  Google Scholar 

  • Kallenrode, M.-B.: 1993, Neutral lines and azimuthal transport of solar energetic particles. J. Geophys. Res. 98, 5573. DOI.

    Article  ADS  Google Scholar 

  • Kong, X., Guo, F., Giacalone, J., Li, H., Chen, Y.: 2017, The acceleration of high-energy protons at coronal shocks: The effect of large-scale streamer-like magnetic field structures. Astrophys. J. 851, 38. DOI.

    Article  ADS  Google Scholar 

  • Kong, X., Guo, F., Chen, Y., Giacalone, J.: 2019, The acceleration of energetic particles at coronal shocks and emergence of a double power-law feature in particle energy spectra. Astrophys. J. 883, 49. DOI.

    Article  ADS  Google Scholar 

  • Laitinen, T., Kopp, A., Effenberger, F., Dalla, S., Marsh, M.S.: 2016, Solar energetic particle access to distant longitudes through turbulent field-line meandering. Astron. Astrophys. 591, A18. DOI.

    Article  ADS  Google Scholar 

  • Lario, D., Karelitz, A.: 2014, Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events. J. Geophys. Res. 119, 4185. DOI.

    Article  Google Scholar 

  • Lario, D., Roelof, E.C., Decker, R.B.: 2014, Longitudinal dependence of SEP peak intensities as evidence of CME-driven shock particle acceleration. In: Hu, Q., Zank, G.P. (eds.) Outstanding Problems in Heliophysics: From Coronal Heating to the Edge of the Heliosphere CS-484, Astron. Soc. Pacific, San Francisco, 98. ADS.

    Google Scholar 

  • Lario, D., Kallenrode, M.-B., Decker, R.B., Roelof, E.C., Krimigis, S.M., Aran, A., Sanahuja, B.: 2006, Radial and longitudinal dependence of solar 4–13 MeV and 27–37 MeV proton peak intensities and fluences: Helios and IMP 8 observations. Astrophys. J. 653, 1531. DOI.

    Article  ADS  Google Scholar 

  • Lario, D., Aran, A., Gómez-Herrero, R., Dresing, N., Heber, B., Ho, G.C., Decker, R.B., Roelof, E.C.: 2013, Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and messenger observations Astrophys. J. 767, 41. DOI.

    Article  ADS  Google Scholar 

  • Lee, M.A.: 2005, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38. DOI.

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI.

    Article  ADS  Google Scholar 

  • Li, G., Moore, R., Mewaldt, R.A., Zhao, L., Labrador, A.W.: 2012, A twin-CME scenario for ground level enhancement events. Space Sci. Rev. 171, 141. DOI.

    Article  ADS  Google Scholar 

  • Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, 82. DOI.

    Article  ADS  Google Scholar 

  • Masson, S., Démoulin, P., Dasso, S., Klein, K.-L.: 2012, The interplanetary magnetic structure that guides solar relativistic particles. Astron. Astrophys. 538, A32. DOI.

    Article  ADS  Google Scholar 

  • Mays, M.L., Taktakishvili, A., Pulkkinen, A., MacNeice, P.J., Rastätter, L., Odstrcil, D., Jian, L.K., Richardson, I.G., LaSota, J.A., Zheng, Y., Kuznetsova, M.M.: 2015, Ensemble modeling of CMEs using the WSA–ENLIL+Cone model. Solar Phys. 290, 1775. DOI.

    Article  ADS  Google Scholar 

  • Mewaldt, R.A., Cohen, C.M.S., Cook, W.R., Cummings, A.C., Davis, A.J., Geier, S., Kecman, B., Klemic, J., Labrador, A.W., Leske, R.A., Miyasaka, H., Nguyen, V., Ogliore, R.C., Stone, E.C., Radocinski, R.G., Wiedenbeck, M.E., Hawk, J., Shuman, S., von Rosenvinge, T.T., Wortman, K.: 2008, The Low-Energy Telescope (LET) and SEP central electronics for the STEREO mission. Space Sci. Rev. 136, 285. DOI.

    Article  ADS  Google Scholar 

  • Müller-Mellin, R., Böttcher, S., Falenski, J., Rode, E., Duvet, L., Sanderson, T., Butler, B., Johlander, B., Smit, H.: 2008, The solar electron and proton telescope for the STEREO mission. Space Sci. Rev. 136, 363. DOI.

    Article  ADS  Google Scholar 

  • Onsager, T., Grubb, R., Kunches, J., Matheson, L., Speich, D., Zwickl, R.W., Sauer, H.: 1996, Operational uses of the GOES energetic particle detectors. In: Washwell, E.R. (ed.) GOES-8 and Beyond, Proc. Internat. Soc. Optics Photo. (SPIE) 2812, 281. DOI.

    Chapter  Google Scholar 

  • Paassilta, M., Papaioannou, A., Dresing, N., Vainio, R., Valtonen, E., Heber, B.: 2018, Catalogue of >55 MeV wide-longitude solar proton events observed by SOHO, ACE, and the STEREOs at ≈1 AU during 2009–2016. Solar Phys. 293, 70. DOI.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664. DOI.

    Article  ADS  Google Scholar 

  • Posner, A.: 2007, Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5. DOI.

  • Reames, D.V.: 2000, Particle acceleration by CME-driven shock waves. In: Kieda, D.B., Salamon, M.B., Dingus, B.L. (eds.) Proc. 26th Internat. Cosmic Ray Conf. 516, American Institute of Physics, Salt Lake City, 289.

    Google Scholar 

  • Reames, D.V.: 2009, Solar energetic-particle release times in historic ground-level events. Astrophys. J. 706, 844. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Mays, M.L., Thompson, B.J.: 2018, Prediction of solar energetic particle event peak proton intensity using a simple algorithm based on CME speed and direction and observations of associated solar phenomena. Space Weather 16, 1862. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., von Rosenvinge, T.T., Cane, H.V.: 2015, The properties of solar energetic particle event-associated coronal mass ejections reported in different CME catalogs. Solar Phys. 290, 1741. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., von Rosenvinge, T.T., Cane, H.V.: 2017, 25 MeV solar proton events in cycle 24 and previous cycles. Adv. Space Res. 60, 755. Solar Energetic Particles, Solar Modulation and Space Radiation: New Opportunities in the AMS-02 Era. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, > 25 MeV proton events observed by the high energy telescopes on the stereo a and b spacecraft and/or at Earth during the first ∼seven years of the stereo mission. Solar Phys. 289, 3059. DOI.

    Article  ADS  Google Scholar 

  • Sandberg, I., Jiggens, P., Heynderickx, D., Daglis, I.A.: 2014, Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP-8/GME data. Geophys. Res. Lett. 41, 4435. DOI.

    Article  ADS  Google Scholar 

  • Sanderson, R.T., Beeck, J., Marsden, G.R., Tranquille, C., Wenzel, K.-P., McKibben, B.R., Smith, J.E.: 1990, Cosmic ray, energetic ion and magnetic field characteristics of a magnetic cloud. In: Protheroe, R.J. (ed.) Proc. 21st Internat. Cosmic Ray Conf., International Cosmic Ray Conference 6, University of Adelaide, Adelaide, 255. ADS.

    Google Scholar 

  • Shea, M.A., Smart, D.F.: 2012, Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev. 171, 161. DOI.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B., Ulrich, R.K.: 1990, Rotation of Doppler features in the solar photosphere. Astrophys. J. 351, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • St. Cyr, O.C., Posner, A., Burkepile, J.T.: 2017, Solar energetic particle warnings from a coronagraph. Space Weather 15, 240. DOI.

    Article  ADS  Google Scholar 

  • Struminsky, A., Heber, B., Kallenrode, M.-B., Müller-Mellin, R., Klassen, A., Kunow, H.: 2006, Injection and propagation of solar protons to high heliospheric latitudes: Ulysses Ket observations. Adv. Space Res. 38, 507. Coronal Mass Ejections and Solar Particle Events in Solar Cycle 23. DOI.

    Article  ADS  Google Scholar 

  • Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., Ng, C.K., Reames, D.V.: 2005, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474. DOI.

    Article  ADS  Google Scholar 

  • Van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: 1975, The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41, 189. DOI.

    Article  ADS  Google Scholar 

  • von Rosenvinge, T.T., Reames, D.V., Baker, R., Hawk, J., Nolan, J.T., Ryan, L., Shuman, S., Wortman, K.A., Mewaldt, R.A., Cummings, A.C., Cook, W.R., Labrador, A.W., Leske, R.A., Wiedenbeck, M.E.: 2008, The high energy telescope for STEREO. Space Sci. Rev. 136, 391. DOI.

    Article  ADS  Google Scholar 

  • Zank, G.P., Li, G., Verkhoglyadova, O.: 2007, Particle acceleration at interplanetary shocks. Space Sci. Rev. 130, 255. DOI.

    Article  ADS  Google Scholar 

  • Zhao, L., Li, G.: 2014, Particle acceleration at a pair of parallel shocks near the Sun. J. Geophys. Res. 119, 6106. DOI.

    Article  Google Scholar 

  • Zhao, L., Zhang, M., Rassoul, H.K.: 2016, Double power laws in the event-integrated solar energetic particle spectrum. Astrophys. J. 821, 62. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The DONKI catalog (ccmc.gsfc.nasa.gov/donki/) is compiled at the CCMC. The GOES, PAMELA, and STEREO data are available at www.ngdc.noaa.gov/stp/satellite/goes/, www.ssdc.asi.it/pamela/ and www.srl.caltech.edu/STEREO/, respectively. The authors thank M.L. Mays for the assistance with the DONKI database. They acknowledge support from the NASA/HSR program NNH19ZDA001N-HSR, the Goddard Space Flight Center / Internal Scientist Funding Model (ISFM) grant HISFM18, and from the Johnson Space Center / Space Radiation Analysis Group (SRAG) under the Integrated Solar Energetic Proton Alert/Warning System (ISEP) project. I.G. Richardson also acknowledges support from NASA program NNH17ZDA001N-LWS and from the STEREO mission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bruno.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figures 9, 10, 11 and 12 are replaced by the correct versions.

Appendix: Estimate of the Magnetic Footpoint Location

Appendix: Estimate of the Magnetic Footpoint Location

The HGS coordinates (\(\alpha _{\mathrm{sc}}\), \(\beta _{\mathrm{sc}}\)) of the footpoint location of the IMF line passing through a given spacecraft can be estimated by assuming a simple 3D Parker spiral model (Parker, 1958). Specifically, the longitude is calculated as

$$ \beta _{\mathrm{sc}} \approx b_{\mathrm{sc}} + \frac{\Omega _{\odot } }{V_{\mathrm{sw}}} \hspace{1mm} \left ( R_{\mathrm{sc}} - R_{0}' \right ) \hspace{1mm} \cos (\alpha _{\mathrm{sc}}), $$
(15)

where \(b_{\mathrm{sc}}\) is the longitude of the spacecraft location, \(R_{\mathrm{sc}}\) is its radial distance,

$$ R_{0}' = R_{0} \hspace{1mm} \left [ 1 + \log \left ( \frac{R_{\mathrm{sc}}}{R_{0}} \right ) \right ], $$
(16)

with \(R_{0}{=}2.5\) R the radius of the “source” surface; \(V_{\mathrm{sw}}\) is the solar-wind speed [km s−1] – assumed to be constant and purely radial – and \(\Omega _{\odot }\) is the differential solar rotation rate at the latitude \(\alpha _{\mathrm{sc}}\) of the footpoint location:

$$ \Omega _{\odot } = A - B \hspace{1mm} \sin ^{2}(\alpha _{\mathrm{sc}}) - C \hspace{1mm} \sin ^{4}(\alpha _{\mathrm{sc}}), $$
(17)

with \(A{=}2.972{\pm} 0.010\) μrad s−1, \(B{=}0.484{\pm} 0.038\) μrad s−1, and \(C{=}0.361{\pm} 0.051\) μrad s−1 (Snodgrass and Ulrich, 1990); in particular, the value of \(A\) is related to the sidereal rotation period at the Equator (≈24.47 days). The footpoint latitude \(\alpha _{\mathrm{sc}}\) is assumed to coincide with the heliographic latitude of the central point of the solar disk as seen by the spacecraft, accounting for the Sun’s rotation axis’ tilt of about 7.25 relative to the Ecliptic plane. In general, at large radial distances the Parker spiral IMF is simplified as an Archimedes spiral by neglecting the logarithmic term (\(R_{\mathrm{sc}}-R_{0}'\approx R_{\mathrm{sc}}-R_{0}\)).

The uncertainty associated with the footpoint longitude can be calculated as

$$ \delta \beta _{\mathrm{sc}} = \sqrt{(\delta \beta _{\mathrm{sw}})^{2}+( \delta \beta _{\mathrm{tra}})^{2}}, $$
(18)

where

$$ \delta \beta _{\mathrm{sw}} = \frac{(R_{\mathrm{sc}} - R_{0}')\hspace{1mm}\cos (\alpha _{\mathrm{sc}})}{V_{\mathrm{sw}}} \hspace{1mm} \sqrt{ \left [ \left ( \frac{\partial \Omega _{\odot }}{\partial \alpha _{\mathrm{sc}}} - \tan (\alpha _{\mathrm{sc}}) \hspace{1mm} \Omega _{\odot }\right ) \delta \alpha _{\mathrm{sc}} \right ]^{2} + \left [ \frac{\Omega _{\odot }}{V_{\mathrm{sw}}} \hspace{1mm} \delta V_{\mathrm{sw}} \right ]^{2}}, $$
(19)

with \(\delta V_{\mathrm{sw}}\) the uncertainty in the solar-wind speed estimate, and \(\delta \beta _{\mathrm{tra}}\) accounts for interplanetary transport effects ignored by the model. Similarly, the error on the footpoint latitude takes into account the deviations from the spiral-model approximation out of the equatorial plane and effects related to the differential changes across the solar surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, A., Richardson, I.G. Empirical Model of 10 – 130 MeV Solar Energetic Particle Spectra at 1 AU Based on Coronal Mass Ejection Speed and Direction. Sol Phys 296, 36 (2021). https://doi.org/10.1007/s11207-021-01779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01779-4

Keywords

Navigation