Skip to main content
Log in

A new perspective on static bifurcations in the presence of viscoelasticity

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This manuscript explores the effect of viscoelasticity on static bifurcations: such as pitchfork, saddle-node, and transcritical bifurcations, of a single-degree-of-freedom mechanical oscillator. The viscoelastic behavior is modeled via a differential form, where the extra degree of freedom represents the internal force provided by the viscoelastic element. The governing equations are derived from a simplified lumped parameter model consisting of a rigid rod incorporating a viscoelastic element and subjected to axial and transverse forces at the free end, in addition to an external time-varying moment applied to the rod. In order to study the effect of viscoelasticity on bifurcation diagrams, the equations of motion are non-dimensionalized. Next, a review of static bifurcations in the absence of viscoelasticity is conducted, followed by an examination of the effect of viscoelasticity on the bifurcation diagrams. Finally, this paper investigates the effects of viscoelasticity on the transient behavior of the oscillator. Results show that the Deborah number, which measures the ratio of the viscoelastic time constant to the natural periodic time of the system, controls the duration of time needed to maintain oscillations around an unstable point before jumping to a stable equilibrium point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. At \(\beta =0\), Eq. (2) reduces to \(\frac{{\dot{f}}_\mathrm{v}}{k}+\frac{f_\mathrm{v}}{\eta }=k\dot{\bar{\delta }}\), the force displacement relationship for a Maxwell material. At \(\beta =1\) Eq. (2) reduces to \({\dot{f}}_\mathrm{v}=k\dot{\bar{\delta }}\) or equivalently \(f_\mathrm{v}=k\bar{\delta }\) a purely elastic material. The damping is ignored, and the damping element is not grounded and thus will experience no deformation.

  2. Typically, an imperfect bifurcation is a co-dimension 2 bifurcation in which both the load and imperfection parameter are varied.

References

  1. Florijn, B., Coulais, C., van Hecke, M.: Programmable mechanical metamaterials. Phys. Rev. Lett. 113(17), 175503 (2014)

    Article  Google Scholar 

  2. Coulais, C., Sabbadini, A., Vink, F., van Hecke, M.: Multi-step self-guided pathways for shape-changing metamaterials. Nature 561(7724), 512–515 (2018)

    Article  Google Scholar 

  3. Kempner, J.: Creep bending and buckling of linearly viscoelastic columns (1954)

  4. Minahen, T.M., Knauss, W.G.: Creep buckling of viscoelastic structures. Int. J. Solids Struct. 30(8), 1075–1092 (1993)

    Article  Google Scholar 

  5. Monsia, M.D.: A nonlinear generalized standard solid model for viscoelastic materials. Int. J. Mech. Eng. (Ser. Publ.) 4, 11–15 (2011)

  6. Nachbar, W., Huang, N.C.: Dynamic snap-through of a simple viscoelastic truss. Q. Appl. Math. 25(1), 65–82 (1967)

    Article  Google Scholar 

  7. Cui, S., Harne, R.L.: Characterizing the nonlinear response of elastomeric material systems under critical point constraints. Int. J. Solids Struct. 135, 197–207 (2018)

    Article  Google Scholar 

  8. Kovac Jr., E.J., Anderson, W.J., Scott, R.A.: Forced non-linear vibrations of a damped sandwich beam. J. Sound Vib. 17(1), 25–39 (1971)

    Article  Google Scholar 

  9. Daya, E.M., Azrar, L., Potier-Ferry, M.: An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams. J. Sound Vib. 271(3–5), 789–813 (2004)

    Article  Google Scholar 

  10. Kosmatka, J.: Damping variations in post-buckled structures having geometric imperfections. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th, p. 2630 (2010)

  11. Murray, G.J., Gandhi, F.: The use of damping to mitigate violent snap-through of bistable systems. In: ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. 541–550. American Society of Mechanical Engineers Digital Collection (2011)

  12. Che, K., Rouleau, M., Meaud, J.: Temperature-tunable time-dependent snapping of viscoelastic metastructures with snap-through instabilities. Extreme Mech. Lett. 32, 100528 (2019)

    Article  Google Scholar 

  13. Johnson, E.R.: The effect of damping on dynamic snap-through. J. Appl. Mech. 47(3), 601–606 (1980)

    Article  Google Scholar 

  14. Virgin, L.N., Wiebe, R.: On damping in the vicinity of critical points. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1993), 20120426 (2013)

    Article  MathSciNet  Google Scholar 

  15. Wiebe, R., Virgin, I.S., Lawrence, N., Spottswood, S.M., Eason, T.G.: Characterizing dynamic transitions associated with snap-through: a discrete system. J. Comput. Nonlinear Dyn. 8(1), 011010 (2013)

    Article  Google Scholar 

  16. Daqaq, M.F.: New insight into energy harvesting via axially-loaded beams. In: ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 457–466. American Society of Mechanical Engineers Digital Collection (2009)

  17. Gonçalves, P.B., Santee, D.M.: Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric postbuckling behavior. In: Mathematical Problems in Engineering, 2008 (2008)

  18. Virgin, L.N.: Vibration of Axially-Loaded Structures. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  19. Cedolin, L., Bažant, Z.P.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  20. Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133(1), 011007 (2011)

    Article  Google Scholar 

  21. Parnell, W.J., De Pascalis, R.: Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformation. Philos. Trans. R. Soc. A 377(2144), 20180072 (2019)

    Article  MathSciNet  Google Scholar 

  22. Yeh, S.-L., Harne, R.L.: Origins of broadband vibration attenuation empowered by optimized viscoelastic metamaterial inclusions. J. Sound Vib. 458, 218–237 (2019)

    Article  Google Scholar 

  23. Fung, R.-F., Huang, J.-S., Chen, Y.-C., Yao, C.-M.: Nonlinear dynamic analysis of the viscoelastic string with a harmonically varying transport speed. Comput. Struct. 66(6), 777–784 (1998)

    Article  Google Scholar 

  24. Chen, L.-Q., Zhang, N.-H., Zu, J.W.: Bifurcation and chaos of an axially moving viscoelastic string. Mech. Res. Commun. 29(2–3), 81–90 (2002)

    Article  Google Scholar 

  25. Meyer, G.A., McCulloch, A.D., Lieber, R.L.: A nonlinear model of passive muscle viscosity. J. Biomech. Eng. 133(9), 091007 (2011)

    Article  Google Scholar 

  26. Holzapfel, G.A.: Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4–5), 489–490 (2002)

    Article  Google Scholar 

  27. Miltz, J., Ramon, O.: Energy absorption characteristics of polymeric foams used as cushioning materials. Polym. Eng. Sci. 30(2), 129–133 (1990)

    Article  Google Scholar 

  28. Puri, T.: Integration of polyurethane foam and seat occupant models to predict the settling point of a seat occupant. Master’s thesis. Purdue University, School of Mechanical Engineering, West Lafayette (2004)

  29. Gibson, L.J., Easterling, K.E., Ashby, M.F.: The structure and mechanics of cork. Proc. R. Soc. Lond. A Math. Phys. Sci. 377(1769), 99–117 (1981)

    Google Scholar 

  30. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  31. Le Barbenchon, L., Girardot, J., Kopp, J.-B., Viot, P.: Strain rate effect on the compressive behaviour of reinforced cork agglomerates. In: EPJ Web of Conferences, vol. 183, p. 03018. EDP Sciences (2018)

  32. Lakes, R.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  33. Gomez, M., Moulton, D.E., Vella, D.: Dynamics of viscoelastic snap-through. J. Mech. Phys. Solids 124, 781–813 (2019)

    Article  MathSciNet  Google Scholar 

  34. Reiner, M.: The Deborah number. Phys. Today 17(1), 62 (1964)

    Article  Google Scholar 

  35. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  36. Silva, L.A.: Internal variable and temperature modeling behavior of viscoelastic structures—a control analysis. PhD thesis, Virginia Tech (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Gibert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix converts the linear standard viscoelastic element from stress–strain form to a force–displacement form. It presents an internal variable formulation of the governing equations of the system.

Fig. 13
figure 13

Viscoelastic linear standard model with internal variable

1.1 Stress to force

In this work, the additional degree of freedom is the viscoelastic force in the system. Recall the viscoelastic relationship in the linear standard model can be written as

$$\begin{aligned} \frac{1}{E_1}{\dot{\sigma }}+\frac{1}{\mu }\sigma =\frac{E_1+E_2}{E_1}{\dot{\epsilon }}+\frac{E_2}{\mu }\epsilon . \end{aligned}$$
(A.1)

where \(E_1\) and \(E_2\) denote the modulus of the element and \(\mu \) is the viscosity. Now if the moduli \(E_1\) and \(E_2\) are parameterized as \(E_1=(1-\beta )E\) and \(E_2=\beta E\), where E is a base elastic modulus and \(\beta \) is a constant, the strain \(\epsilon =L\sin \theta /b\) where A and b are the cross section area of length of the viscoelastic element, and \(\sigma =f_\mathrm{v}A\), Eq. (A.1) can be written as

$$\begin{aligned}&\frac{{\dot{f}}_\mathrm{v}}{(1-\beta )k}+\frac{f_\mathrm{v}}{\eta }=\frac{\dot{\bar{\delta }}}{(1-\beta )}+\left( \frac{\beta k }{\eta }\right) \bar{\delta }, \nonumber \\&\text {where}~\bar{\delta }=L\sin \theta ,~k=EA/b,\text {and}~\eta =\mu A/b. \end{aligned}$$
(A.2)

1.2 Internal variable description

An alternate description can be obtained using the internal strain in the system. In this description the viscoelastic stress can be written as

$$\begin{aligned}&\sigma =(E_1+E_2)\epsilon -E_1\bar{\epsilon }, \end{aligned}$$
(A.3)
$$\begin{aligned}&\mu \dot{\bar{\epsilon }}+E_1(\bar{\epsilon }-\epsilon )=0, \end{aligned}$$
(A.4)

where \(\bar{\epsilon }\) is the internal strain [36] and is shown in Fig. 13. These two descriptions are equivalent. This can be shown by taking the derivative of Eq. (A.3) to yield

$$\begin{aligned}&{\dot{\sigma }}=(E_1+E_2){\dot{\epsilon }}-E_2\dot{\bar{\epsilon }}. \end{aligned}$$
(A.5)

Now, Eqs. (A.5) and (A.3) can be plugged into Eq. (A.4) to yield

$$\begin{aligned} \frac{1}{E_1}{\dot{\sigma }}+\frac{1}{\mu }\sigma =\frac{E_1+E_2}{E_1}{\dot{\epsilon }}+\frac{E_2}{\mu }\epsilon . \end{aligned}$$

The additional dynamics of the system to viscoelasticity can be represented as \(\sigma \) or \(\bar{\epsilon }\).

The equation motion of the system in Fig. 2b can be written in terms of internal displacements \({\bar{x}}\) as

$$\begin{aligned}&I\ddot{\theta }+{\bar{M}}(\theta ;k_1,k_2,k_3) \end{aligned}$$
(A.6)
$$\begin{aligned}&\quad =\beta k L {\bar{x}} \cos \theta -kL^2\cos \theta \sin \theta + \nonumber \\&F_CL \sin \theta -PL\cos \theta +M \cos \varOmega t,\nonumber \\&\quad \eta \dot{{\bar{x}}}\beta k ({\bar{x}}-L\sin \theta )=0; \end{aligned}$$
(A.7)

when the functions \(\sin \theta \) and \(\cos \theta \) are expanded using a Taylor series, the equations of motion for the system can be written as

$$\begin{aligned}&I\ddot{\theta }+(k_1-F_CL)\theta +k_2\theta ^2+k_3\theta ^3\nonumber \\&\quad = kL(\beta x_i-L\theta )-PL+M \cos \varOmega t,\end{aligned}$$
(A.8)
$$\begin{aligned}&\eta {\dot{x}}_i+\beta k (x_i-L\theta )=0. \end{aligned}$$
(A.9)

Equations  in (A.8) and  (A.9) are the internal displacement equivalents of Equations (3) and (4).

1.3 Characteristic polynomial

The characteristic polynomial for the Jacobian defined in Eq. 14 can be written as

$$\begin{aligned} \varLambda ^3+a_0\varLambda ^2+a_1\varLambda +a_2=0, \end{aligned}$$
(A.10)

where

$$\begin{aligned} a_0&=1-\beta ,\end{aligned}$$
(A.11)
$$\begin{aligned} a_1&=\frac{1}{D_e^{-2}}\left( 1+\alpha _2 x_{01} +3\alpha _3^2 x_{01}-\lambda \right) ,~\text {and}\end{aligned}$$
(A.12)
$$\begin{aligned} a_2&=+\frac{1}{D_e^{-2}} \left( \beta \lambda - \alpha \beta ^2-\lambda \right) . \end{aligned}$$
(A.13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhadidi, A.H., Gibert, J.M. A new perspective on static bifurcations in the presence of viscoelasticity. Nonlinear Dyn 103, 1345–1363 (2021). https://doi.org/10.1007/s11071-020-06104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06104-5

Keywords

Navigation