Skip to main content
Log in

Effect of Heat Treatment on Structure and Oxidation Resistance of Flame-Sprayed Ni-20 wt.% Al on Carbon Steel

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, the effects of time and temperature of heat treatment on Ni-20 wt.% Al flame spraying coatings were studied. The objectives are to find the optimal sample in terms of microstructure and compare its oxidation resistance with the as-sprayed coating. The coatings were deposited by flame spraying on low carbon (St 37) steel substrate. The specimens were heat-treated in vacuum at 850 °C and 950 °C for 1 h and at 1050 °C for 1, 3, and 6 h. Microstructural characterization and phase analysis were performed by scanning electron microscopy, energy-dispersive spectrometry, and x-ray diffraction, respectively. The results showed that the lowest porosity (0.43 %) and the highest NiAl content were achieved for the sample heat-treated at 1050 °C for 1 h. Optimized heat-treated, as-sprayed, and bare steel specimens were exposed to ambient air at 800 °C in order to evaluate their durability and oxidation resistance. The results showed that their oxidation rate constants were 24.66, 65.06, and 269.42, respectively. Most of the NiAl content in the coating was responsible for covering the coating surface by a protective γ-Al2O3 layer during the high-temperature oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Saeedi, A.S.R. Aghdam and G. Gholami, A study on nanostructured in-situ oxide dispersed NiAl coating and its high temperature oxidation behavior, Surf. Coat. Technol., 2015, 276, p 704–713.

    Article  CAS  Google Scholar 

  2. M. Sun, A. Yerokhin, A. Matthews, M. Thomas, A. Laukart, M. von Hausen and C.P. Klages, Characterisation and electrochemical evaluation of plasma electrolytic oxidation coatings on magnesium with plasma enhanced chemical vapour deposition post-treatments, Plasma Processes Polym., 2016, 13(2), p 266–278.

    Article  CAS  Google Scholar 

  3. P. Zhang, J. Liu, G. Xu, X. Yi, J. Chen and Y. Wu, Anticorrosive property of Al coatings on sintered NdFeB substrates via plasma assisted physical vapor deposition method, Surf. Coat. Technol., 2015, 282, p 86–93.

    Article  CAS  Google Scholar 

  4. D. Chaliampalias, S. Andronis, N. Pliatsikas, E. Pavlidou, D. Tsipas, S. Skolianos, K. Chrissafis, G. Stergioudis, P. Patsalas and G. Vourlias, Formation and oxidation resistance of Al/Ni coatings on low carbon steel by flame spray, Surf. Coat. Technol., 2014, 255, p 62–68.

    Article  CAS  Google Scholar 

  5. M. Srivastava, J. Balaraju, B. Ravisankar, C. Anandan and V.W. Grips, High temperature oxidation and corrosion behaviour of Ni/Ni-Co-Al composite coatings, Appl. Surf. Sci., 2012, 263, p 597–607.

    Article  CAS  Google Scholar 

  6. H.Y. Lee, S.H. Jung, S.Y. Lee and K.H. Ko, Alloying of cold-sprayed Al-Ni composite coatings by post-annealing, Appl. Surf. Sci., 2007, 253(7), p 3496–3502.

    Article  CAS  Google Scholar 

  7. B. Movahedi, M. Enayati and M. Salehi, Thermal spray coatings of Ni-10 wt-% Al composite powder synthesised by low energy mechanical milling, Surf. Eng., 2009, 25(4), p 276–283.

    Article  CAS  Google Scholar 

  8. K.S. Mohammed and H.T. Naeem, Effect of milling parameters on the synthesis of Al-Ni intermetallic compound prepared by mechanical alloying, Phys. Metals Metallogr., 2015, 116(9), p 859–868.

    Article  Google Scholar 

  9. Y. Wang, Y. Yang and M. Yan, Microstructures, hardness and erosion behavior of thermal sprayed and heat treated NiAl coatings with different ceria, Wear, 2007, 263(1–6), p 371–378.

    Article  CAS  Google Scholar 

  10. A. Marinou, G. Xanthopoulou, G. Vekinis, A. Lekatou and M. Vardavoulias, Synthesis and heat treatment of sprayed high-temperature NiAl-Ni3Al coatings by in-flight combustion synthesis (CAFSY), Int. J. Self Propag. High Temp. Synth., 2015, 24(4), p 192–202.

    Article  CAS  Google Scholar 

  11. K. Abdalla, A. Rahmat and A. Azizan, Influence of activation treatment with nickel acetate on the zinc phosphate coating formation and corrosion resistance, Mater. Corros., 2014, 65(10), p 977–981.

    Article  CAS  Google Scholar 

  12. M. Moshksar and M. Mirzaee, Formation of NiAl intermetallic by gradual and explosive exothermic reaction mechanism during ball milling, Intermetallics, 2004, 12(12), p 1361–1366.

    Article  CAS  Google Scholar 

  13. K. Bochenek and M. Basista, Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications, Prog. Aerosp. Sci., 2015, 79, p 136–146.

    Article  Google Scholar 

  14. P. Jozwik, W. Polkowski and Z. Bojar, Applications of Ni3Al based intermetallic alloys—current stage and potential perceptivities, Materials, 2015, 8(5), p 2537–2568.

    Article  CAS  Google Scholar 

  15. W. Lee, Oxidation and sulfidation of Ni3Al, Mater. Chem. Phys., 2002, 76(1), p 26–37.

    Article  CAS  Google Scholar 

  16. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Cleveland, 2004.

    Google Scholar 

  17. S. Ranade, M. Forsyth and M. Tan, In situ measurement of pipeline coating integrity and corrosion resistance losses under simulated mechanical strains and cathodic protection, Prog. Org. Coat., 2016, 101, p 111–121.

    Article  CAS  Google Scholar 

  18. R.M. Trommer and C.P. Bergmann, Flame Spray Technology: Method for Production of Nanopowders, Springer, Berlin, 2015.

    Book  Google Scholar 

  19. R.B. Heimann, Plasma-Spray Coating: Principles and Applications, Wiley, Hoboken, 2008.

    Google Scholar 

  20. D. Chaliampalias, G. Vourlias, E. Pavlidou, G. Stergioudis, S. Skolianos and K. Chrissafis, High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings, Appl. Surf. Sci., 2008, 255(5), p 3104–3111.

    Article  CAS  Google Scholar 

  21. K. Das, P. Choudhury and S. Das, The Al-O-Ti (aluminum-oxygen-titanium) system, J Phase Equilibria, 2002, 23(6), p 525.

    Article  CAS  Google Scholar 

  22. P. Fauchais, A. Vardelle and B. Dussoubs, Quo vadis thermal spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44–66.

    Article  CAS  Google Scholar 

  23. S. Hashmi, Comprehensive materials processing. Newnes (2014)

  24. N. Espallargas, Introduction to Thermal Spray Coatings, Future Development of Thermal Spray Coatingsed, Elsevier, Amsterdam, 2015, p 1–13

    Book  Google Scholar 

  25. M. Richert, I. Nejman, P. Zawadzka and J. Kacprzyńska-Gołacka, Selection of protective coatings obtained by plasma-spraying method for foundry industry, Metall. Foundry Eng., 2017, 43, p 51–56.

    Article  Google Scholar 

  26. A. Handbook, Alloy Phase Diagrams, Vol 3 ASM international, Cleveland, 1992.

    Google Scholar 

  27. W. Lee, D. Lee, M. Kim and S. Ur, High temperature oxidation of an oxide-dispersion strengthened NiAl, Intermetallics, 1999, 7(12), p 1361–1366.

    Article  CAS  Google Scholar 

  28. G. Xanthopoulou, A. Marinou, G. Vekinis, A. Lekatou and M. Vardavoulias, Ni-Al and NiO-Al composite coatings by combustion-assisted flame spraying, Coatings, 2014, 4, p 231–252.

    Article  Google Scholar 

  29. G. Bolelli, L. Lusvarghi and R. Giovanardi, A comparison between the corrosion resistances of some HVOF-sprayed metal alloy coatings, Surf. Coat. Technol., 2008, 202(19), p 4793–4809.

    Article  CAS  Google Scholar 

  30. Ò. ÙØÓÖ, ASM Handbook Volume 03: Alloy Phase Diagrams. Materials Park, Ohio, USA: ASM International (1992)

  31. G. Sundararajan, P.S. Phani, A. Jyothirmayi and R.C. Gundakaram, The influence of heat treatment on the microstructural, mechanical and corrosion behaviour of cold sprayed SS 316L coatings, J. Mater. Sci., 2009, 44(9), p 2320–2326.

    Article  CAS  Google Scholar 

  32. I. Ansara, B. Sundman and P. Willemin, Thermodynamic modeling of ordered phases in the Ni-Al system, Acta Metall., 1988, 36(4), p 977–982.

    Article  CAS  Google Scholar 

  33. J. Schab, J. Zimmermann, P.-D. Grasso, A. Stankowski, S. Heinze, A. Marquardt and C. Leyens, Thermodynamic calculation and experimental analysis of critical phase transformations in HVOF-sprayed NiCrAlY-coating alloys, Surf. Coat. Technol., 2019, 357, p 924–938.

    Article  CAS  Google Scholar 

  34. A. Paul, A.A. Kodentsov and F. Van Loo, Bifurcation of the Kirkendall plane during interdiffusion in the intermetallic compound β-NiAl, Acta Mater., 2004, 52(13), p 4041–4048.

    Article  CAS  Google Scholar 

  35. K. Fujiwara and Z. Horita, Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples, Acta Mater., 2002, 50(6), p 1571–1579.

    Article  CAS  Google Scholar 

  36. J. Pelleg, Diffusion in the Iron Group L12 and B2 Intermetallic Compounds, Springer, Berlin, 2016.

    Google Scholar 

  37. R. Abbaschian and R.E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning, Boston, 2008.

    Google Scholar 

  38. V.N. Ivanovski, A. Umićević, J. Belošević-Čavor, H. Lei, L. Li, B. Cekić, V. Koteski and C. Petrovic, Local structure study of Fe dopants in Ni-deficit Ni3Al alloys, J. Alloy. Compd., 2015, 651, p 705–711.

    Article  CAS  Google Scholar 

  39. Q. Wang, L. Li, G. Yang, X. Zhao and Z. Ding, Influence of heat treatment on the microstructure and performance of high-velocity oxy-fuel sprayed WC–12Co coatings, Surf. Coat. Technol., 2012, 206(19–20), p 4000–4010.

    Article  CAS  Google Scholar 

  40. H. Chen and E. Pfender, Microstructure of plasma-sprayed Ni-Al alloy coating on mild steel, Thin Solid Films, 1996, 280(1–2), p 188–198.

    Article  CAS  Google Scholar 

  41. I. Ohnuma, S. Shimenouchi, T. Omori, K. Ishida and R. Kainuma, Experimental determination and thermodynamic evaluation of low-temperature phase equilibria in the Fe-Ni binary system, Calphad, 2019, 67, p 101677.

    Article  CAS  Google Scholar 

  42. M. Halvarsson, V. Langer and S. Vuorinen, Determination of the thermal expansion of κ-Al2O3 by high temperature XRD, Surf. Coat. Technol., 1995, 76, p 358–362.

    Article  Google Scholar 

  43. S.P. Srivastava, R.C. Srivastava, I.D. Singh, S.D. Pandey and P.L. Gupta, Temperature dependence of thermal expansion and infrared lattice vibrational mode of nickel oxide, J. Phys. Soc. Jpn., 1977, 43(3), p 885–890.

    Article  CAS  Google Scholar 

  44. H. Evans and M. Taylor, Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems, Oxid. Met., 2001, 55(1–2), p 17–34.

    Article  CAS  Google Scholar 

  45. N. Birks, G.H. Meier and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  46. J.D. Kuenzly and D. Douglass, The oxidation mechanism of Ni3Al containing yttrium, Oxid. Met., 1974, 8(3), p 139–178.

    Article  CAS  Google Scholar 

  47. S. Saeidi, K. Voisey and D. McCartney, The effect of heat treatment on the oxidation behavior of HVOF and VPS CoNiCrAlY coatings, J. Therm. Spray Technol., 2009, 18(2), p 209–216.

    Article  CAS  Google Scholar 

  48. S. Choi, H. Cho, Y. Kim and D. Lee, High-temperature oxidation behavior of pure Ni3Al, Oxid. Met., 1996, 46(1–2), p 51–72.

    Article  CAS  Google Scholar 

  49. P. Hou, Segregation phenomena at thermally grown Al2O3/alloy interfaces, Annu. Rev. Mater. Res., 2008, 38, p 275–298.

    Article  CAS  Google Scholar 

  50. E. Schumann and M. Rühle, Microstructural observations on the oxidation of γ′-Ni3Al at high oxygen partial pressure, Acta Metall. Mater., 1994, 42(4), p 1481–1487.

    Article  CAS  Google Scholar 

  51. F. Pettit, E. Randklev and E. Felten, Formation of NiAl2O4 by solid state reaction, J. Am. Ceram. Soc., 1966, 49(4), p 199–203.

    Article  CAS  Google Scholar 

  52. F. Ghadami, S. Ghadami and H. Abdollah-Pour, Structural and oxidation behavior of atmospheric heat treated plasma sprayed WC-Co coatings, Vacuum, 2013, 94, p 64–68.

    Article  CAS  Google Scholar 

  53. M. Jafari, M. Enayati, M. Salehi, S. Nahvi and C. Park, Comparison between oxidation kinetics of HVOF sprayed WC-12Co and WC-10Co-4Cr coatings, Int. J. Refract Metal Hard Mater., 2013, 41, p 78–84.

    Article  CAS  Google Scholar 

  54. M. Jafari, M. Enayati, M. Salehi, S. Nahvi, J. Han and C. Park, High temperature oxidation behavior of micro/nanostructured WC-Co coatings deposited from Ni-coated powders using high velocity oxygen fuel spraying, Surf. Coat. Technol., 2016, 302, p 426–437.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Nahvi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, A., Nahvi, S.M. & Raeissi, K. Effect of Heat Treatment on Structure and Oxidation Resistance of Flame-Sprayed Ni-20 wt.% Al on Carbon Steel. J Therm Spray Tech 30, 739–753 (2021). https://doi.org/10.1007/s11666-021-01158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01158-2

Keywords

Navigation