Skip to main content
Log in

Fabrication of Schiff’s Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, a ternary composite containing a Schiff base adduct (chitosan-glutaraldehyde) along with activated charcoal (Ch-Glu/AC) was successfully prepared that contains activated charcoal with cross-linked chitosan. The Schiff base adduct was obtained by reaction of a dialdehyde bifunctional cross-linker agent (glutaraldehyde; Glu), where various methods were employed to study the morphology, material crystallinity, surface area, and surface functional group of the ternary composite (Ch-Glu/AC). Ch-Glu/AC was applied as an adsorbent to remove a cationic dye (thionine dye, TH) from aqueous media. The effect of various independent variables on the adsorption process including adsorbent dose (A: 0.02–0.1 g), solution pH (B: 4–10), temperature (C: 30–50 °C), and time (D: 30–180 min) were investigated and optimized using response surface methodology-Box–Behnken design (RSM-BBD). The results demonstrated that TH dye adsorption on the Ch-Glu/AC surface obeyed the pseudo-first order (PFO) kinetic model, and the Freundlich isotherm was obeyed at equilibrium. The maximum adsorption capacity (qm) of the TH dye was 30.8 mg/g at 50 °C. The TH dye adsorption mechanism onto the composite surface was attributed to the electrostatic interaction, π-π interaction, and H-bonding. The findings of this work reveal the feasibility of Ch-Glu/AC as a candidate adsorbent for effective removal of cationic dyes from aquatic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta A 99:102–109

    Article  CAS  Google Scholar 

  2. Acar ET, Ortaboy S, Atun G (2015) Adsorptive removal of thiazine dyes from aqueous solutions by oil shale and its oil processing residues: characterization, equilibrium, kinetics and modeling studies. Chem Eng J 276:340–348

    Article  CAS  Google Scholar 

  3. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227

    Article  CAS  PubMed  Google Scholar 

  4. Moradnia F, Fardood ST, Ramazani A, Gupta VK (2020) Green synthesis of recyclable MgFeCrO4 spinel nanoparticles for rapid photodegradation of direct black 122 dye. J Photochem Photobiol A 392:112433

    Article  CAS  Google Scholar 

  5. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219

    Article  CAS  PubMed  Google Scholar 

  6. Abdulhameed AS, Jawad AH, Mohammad AT (2020) Statistical optimization for dye removal from aqueous solution by cross-linked chitosan composite. Sci Lett 14(2):1–14

    Article  Google Scholar 

  7. Beluci NDCL, Mateus GAP, Miyashiro CS, Homem NC, Gomes RG, Fagundes-Klen MR, Vieira AMS (2019) Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Sci Total Environ 664:222–229

    Article  CAS  PubMed  Google Scholar 

  8. Malek NNA, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: an optimized process. Int J Biol Macromol 146:530–539

    Article  PubMed  CAS  Google Scholar 

  9. Abdulhameed AS, Mohammad AT, Jawad AH (2019) Modeling and mechanism of reactive orange 16 dye adsorption by chitosan-glyoxal/ TiO2 nanocomposite: application of response surface methodology. Desalin Water Treat 164:346–360

    Article  CAS  Google Scholar 

  10. Wu J, Cheng X, Yang G (2019) Preparation of nanochitin-contained magnetic chitosan microfibers via continuous injection gelation method for removal of Ni (II) ion from aqueous solution. Int J Biol Macromol 125:404–413

    Article  CAS  PubMed  Google Scholar 

  11. Abdulhameed AS, Jawad AH, Mohammad AT (2019) Synthesis of chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresour Technol 293:122071

    Article  CAS  PubMed  Google Scholar 

  12. Naskar S, Sharma S, Koutsu K (2019) Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J Drug Deliv Sci Technol 49:66–81

    Article  CAS  Google Scholar 

  13. Sharififard H, Rezvanpanah E, Rad SH (2018) A novel natural chitosan/activated carbon/iron bio-nanocomposite: sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process. Bioresour Technol 270:562–569

    Article  CAS  PubMed  Google Scholar 

  14. Jawad AH, Malek NNA, Abdulhameed AS, Razuan R (2020) Synthesis of magnetic chitosan-Fly Ash/Fe3O4 composite for adsorption of reactive orange 16 dye: optimization by Box-Behnken design. J Polym Environ 28:1068–1082

    Article  CAS  Google Scholar 

  15. Mohammad AT, Abdulhameed AS, Jawad AH (2019) Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: methyl orange adsorption and mechanism studies. Int J Biol Macromol 129:98–109

    Article  CAS  PubMed  Google Scholar 

  16. Guo M, Wang J, Wang C, Strong PJ, Jiang P, Ok YS, Wang H (2019) Carbon nanotube-grafted chitosan and its adsorption capacity for phenol in aqueous solution. Sci Total Environ 682:340–347

    Article  CAS  PubMed  Google Scholar 

  17. Jóźwiak T, Filipkowska U, Szymczyk P, Rodziewicz J, Mielcarek A (2017) Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React Funct Polym 114:58–74

    Article  CAS  Google Scholar 

  18. Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26(6):618–631

    Article  CAS  PubMed  Google Scholar 

  19. Roy S, Das P, Sengupta S, Manna S (2017) Calcium impregnated activated charcoal: optimization and efficiency for the treatment of fluoride containing solution in batch and fixed bed reactor. Process Saf Environ 109:18–29

    Article  CAS  Google Scholar 

  20. Pinho MT, Silva AM, Fathy NA, Attia AA, Gomes HT, Faria JL (2015) Activated carbon xerogel–chitosan composite materials for catalytic wet peroxide oxidation under intensified process conditions. J Environ Chem Eng 3(2):1243–1251

    Article  CAS  Google Scholar 

  21. Danalıoğlu ST, Bayazit ŞS, Kuyumcu ÖK, Salam MA (2017) Efficient removal of antibiotics by a novel magnetic adsorbent: magnetic activated carbon/chitosan (MACC) nanocomposite. J Mol Liq 240:589–596

    Article  CAS  Google Scholar 

  22. Wróbel-Iwaniec I, Díez N, Gryglewicz G (2015) Chitosan-based highly activated carbons for hydrogen storage. Int J Hydrogen Energy 40(17):5788–5796

    Article  CAS  Google Scholar 

  23. Keramati M, Ghoreyshi AA (2014) Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E 57:161–168

    Article  CAS  Google Scholar 

  24. Tang C, Hu D, Cao Q, Yan W, Xing B (2017) Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: preparation, mechanism, and their antibacterial activity. Appl Surf Sci 394:457–465

    Article  CAS  Google Scholar 

  25. Wang L, Wang Y, Li A, Yang Y, Wang J, Zhao H, Qi T (2014) Electrocatalysis of carbon black-or chitosan-functionalized activated carbon nanotubes-supported Pd with a small amount of La2O3 towards methanol oxidation in alkaline media. Int J Hydrogen Energy 39(27):14730–14738

    Article  CAS  Google Scholar 

  26. Dalvand A, Nabizadeh R, Ganjali MR, Khoobi M, Nazmara S, Mahvi AH (2016) Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Mater 404:179–189

    Article  CAS  Google Scholar 

  27. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, (Recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  28. Ahmed MJ, Okoye PU, Hummadi EH, Hameed BH (2019) High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue. Bioresour Technol 278:159–164

    Article  CAS  PubMed  Google Scholar 

  29. Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Tunable Schiff’s base-cross-linked chitosan composite for the removal of reactive red 120 dye: adsorption and mechanism study. Int J Biol Macromol 142:732–741

    Article  CAS  PubMed  Google Scholar 

  30. Barpanda P, Fanchini G, Amatucci GG (2011) Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon 49:2538–2548

    Article  CAS  Google Scholar 

  31. Mohammed IA, Jawad AH, Abdulhameed AS, Mastulia MS (2020) Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: statistical optimization and mechanism study. Int J Biol Macromol 161:503–513

    Article  CAS  PubMed  Google Scholar 

  32. Moghaddam AZ, Ghiamati E, Pourashuri A, Allahresani A (2018) Modified nickel ferrite nanocomposite/functionalized chitosan as a novel adsorbent for the removal of acidic dyes. Int J Biol Macromol 120:1714–1725

    Article  CAS  Google Scholar 

  33. Jawad AH, Abdulhameed AS (2020) Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study. Surf Interface 18:100422

    Article  CAS  Google Scholar 

  34. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Vet Akad Handl 24:1–39

    Google Scholar 

  35. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  36. Zou X, Zhang H, Chen T, Li H, Meng C, Xia Y, Guo J (2019) Preparation and characterization of polyacrylamide/sodium alginate microspheres and its adsorption of MB dye. Colloids Surf A 567:184–192

    Article  CAS  Google Scholar 

  37. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  38. Frenudlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    Google Scholar 

  39. Temkin MI (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12:327–356

    CAS  Google Scholar 

  40. Abdulhameed AS, Mohammad AT, Jawad AH (2019) Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J Clean Prod 232:43–56

    Article  CAS  Google Scholar 

  41. Dash S, Chaudhuri H, Gupta R, Nair UG (2018) Adsorption study of modified coal fly ash with sulfonic acid as a potential adsorbent for the removal of toxic reactive dyes from aqueous solution: kinetics and thermodynamics. J Environ Chem Eng 6(5):5897–5905

    Article  CAS  Google Scholar 

  42. Rashid RA, Ishak MAM, Hello KM (2018) Adsorptive removal of methylene blue by commercial coconut shell activated carbon. Sci Lett 12:27–97

    Google Scholar 

  43. Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int J Biol Macromol 98:233–239

    Article  CAS  PubMed  Google Scholar 

  44. Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta A Mol Biomol Spectrosc 99:102–109

    Article  CAS  PubMed  Google Scholar 

  45. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Mesoporous crosslinked chitosan-activated charcoal composite for the removal of thionine cationic dye: comprehensive adsorption and mechanism study. J Polym Environ 28(3):1095–1105

    Article  CAS  Google Scholar 

  46. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14(1):305–313

    Article  Google Scholar 

  47. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    Article  CAS  PubMed  Google Scholar 

  48. Ishmaturrahmi R, Mustafa I (2019) Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem J 144:397–402

    Article  CAS  Google Scholar 

  49. Karaer H, Kaya I (2016) Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous Mesoporous Mater 232:26–38

    Article  CAS  Google Scholar 

  50. Yan M, Huang W, Li Z (2019) Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. Int J Biol Macromol 136:927–935

    Article  CAS  PubMed  Google Scholar 

  51. Mohamed MH, Udoetok IA, Wilson LD (2020) Animal biopolymer-plant biomass composites: synergism and improved sorption efficiency. J Compos Sci 4(1):15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Education (MOE) Malaysia, for funding this research project under Fundamental Research Grant Scheme (FRGS): FRGS/1/2019/STG01/ UiTM/02/3, No. Fail RMC: 600-IRMI/FRGS 5/3 (340/2019). The authors would also like to thank the Researchers Supporting Project No. (RSP-2020/138) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Jawad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, A.H., Abdulhameed, A.S., Wilson, L.D. et al. Fabrication of Schiff’s Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology. J Polym Environ 29, 2855–2868 (2021). https://doi.org/10.1007/s10924-021-02057-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02057-x

Keywords

Navigation