Skip to main content
Log in

Evolutionary Algorithm based Ensemble Extractive Summarization for Developing Smart Medical System

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The amount of information in the scientific literature of the bio-medical domain is growing exponentially, which makes it difficult in developing a smart medical system. Summarization techniques help for efficient searching and understanding of relevant information from the medical documents. In the paper, an evolutionary algorithm based ensemble extractive summarization technique is devised as a smart medical application with the idea of hybrid artificial intelligence on natural language processing. We have considered the abstracts of the target article and its cited articles as the base summaries and a multi-objective evolutionary algorithm is applied for generating the ensemble summary of the target article. Each sentence of the base summaries is represented by a concept vector of the medical terms contained in it with the help of the Unified Modelling Language System (UMLS) tool which is widely used in various smart medical applications. These terms carry the key information of the sentence which is very useful to find out the semantic similarity among the sentences. Fitness functions of the evolutionary algorithm are mainly defined using clustering coefficient and sparsity index, the concepts of graph theory. After the convergence of the algorithm, the best solution of the final population gives the ensemble summary. Next, the semantic similarity of each sentence in the target article with the ensemble summary is calculated and the sentences which are most similar to the ensemble summary are considered as the summary of the target article. The method is applied to the articles available in the PubMed MEDLINE database system and experimental results are compared with some state of the art methods applied in the Bio-medical domain. Experimental results and comparative study based on the performance evaluation show that the method competes with some recently proposed summarization methods and outperforms others, which express the effectiveness of the proposed methodology. Different statistical tests have also been made to observe that the method is statistically significant.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. PubMed MEDLINE dataset, https://www.nlm.nih.gov/databases/download/pubmed_medline.html

  2. UMLS, https://www.nlm.nih.gov/research/umls/

  3. Pubmed central, https://www.ncbi.nlm.nih.gov/pmc/

  4. BIOASQ, http://www.bioasq.org/

  5. Pubmed open-access (oa) subset, https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

  6. Medline xml repository, https://www.nlm.nih.gov/databases/download/data_distrib_main.html

  7. MeSH, https://www.nlm.nih.gov/mesh/meshhome.html

  8. UMLS metathesaurus metamap, https://www.nlm.nih.gov/research/umls/implementation_resources/metamap.html

  9. 2018abUMLS, https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/abbreviations.html

  10. Python 2.7.14 documentation, https://docs.python.org/2/index.htmlT

  11. Pygmo documentation, https://media.readthedocs.org/pdf/pygmo/newdocs/pygmo.pdf

  12. Swesum: Automatic text summarizer, http://swesum.nada.kth.se/index.html

References

  1. Tas O, Kiyani F (2007) A survey automatic text summarization. Press Acad Proc 5(1):205–213. https://doi.org/10.17261/Pressacademia.2017.591 [Online]

    Article  Google Scholar 

  2. Nazari N, Mahdavi M (2019) A survey on automatic text summarization. J AI Data Min 7(1):121–135. https://doi.org/10.22044/JADM.2018.6139.172610.22044/JADM.2018.6139.1726 [Online]

    Article  Google Scholar 

  3. Dalal V, Malik L (2013) A survey of extractive and abstractive text summarization techniques. In: 2013 6th International Conference on Emerging Trends in Engineering and Technology, pp. 109–110. [Online] https://doi.org/10.1109/ICETET.2013.31

  4. Nenkova A, McKeown K (2012) A survey of text summarization techniques. Springer Science+Business Media, [Online] https://doi.org/10.1007/978-1-4614-3223-4_3

  5. Saggion H, Lapalme G (2002) Generating indicative-informative summaries with sumum. Comput linguist 28(4):497–526. https://doi.org/10.1162/089120102762671963 [Online]

    Article  Google Scholar 

  6. Moradi M, Dorffner G, Samwald M (2020) Deep contextualized embeddings for quantifying the informative content in biomedical text summarization. Comput Methods Prog Biomed 184:105117. https://doi.org/10.1016/j.cmpb.2019.105117 [Online]

    Article  Google Scholar 

  7. Dutta S, Chandra V, Mehra K, Das AK, Chakraborty T, Ghosh S (2018) Ensemble algorithms for microblog summarization. IEEE Intel Syst 33(3):4–14. https://doi.org/10.1109/MIS.2018.033001411 [Online]

    Article  Google Scholar 

  8. Corchado E, Baruque B (2012) Wevos-visom: an ensemble summarization algorithm for enhanced data visualization. Neurocomputing 75(1):171–184. https://doi.org/10.1016/j.neucom.2011.01.027 [Online]

    Article  Google Scholar 

  9. Baruque B, Corchado E, Mata A, Corchado JM (2009) Ensemble methods for boosting visualization models. In: International Work-Conference on Artificial Neural Networks. Springer, pp. 165–173. [Online]. https://doi.org/10.1007/978-3-642-02478-8_21

  10. Mallick C, Das AK, Dutta M, Das AK, Sarkar A (2019) Graph-based text summarization using modified textrank. Soft Comput Data Anal. Springer, pp. 137–146. [Online]. https://doi.org/10.1007/978-981-13-0514-6_14

  11. Dutta M, Das AK, Mallick C, Sarkar A, Das AK (2019) A graph based approach on extractive summarization. Emerg Technol Data Min Inform Secur. Springer, pp. 179–187. [Online]. https://doi.org/10.1007/978-981-13-1498-8_16

  12. Attarha M, Moore CM, Vecera SP (2014) Summary statistics of size: fixed processing capacity for multiple ensembles but unlimited processing capacity for single ensembles. J Exp Psychol Hum Percept Perform 40(4):1440. https://doi.org/10.1037/a0036206 [Online]

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J (2019) Biobert: pre-trained biomedical language representation model for biomedical text mining. https://doi.org/10.1093/bioinformatics/btz682, arXiv preprint arXiv:1901.08746 [Online]

  14. Sun C, Qiu X, Xu Y, Huang X (2019) How to fine-tune bert for text classification? In: China National Conference on Chinese Computational Linguistics. Springer, pp. 194–206. [Online]. https://doi.org/10.1007/978-3-030-32381-3_16

  15. Xie F-L, Soong FK, Li H (2016) A kl divergence and dnn-based approach to voice conversion without parallel training sentences. In: Interspeech, pp. 287–291. [Online]. https://doi.org/10.21437/Interspeech.2016-116

  16. Gen M, Lin L (2007) Genetic algorithms. In: Wiley Encyclopedia of Computer Science and Engineering, pp. 1–15, [Online]. https://doi.org/10.1002/9780470050118.ecse169

  17. Hou N, He F, Zhou Y, Chen Y, Yan X (2018) A parallel genetic algorithm with dispersion correction for hw/sw partitioning on multi-core cpu and many-core gpu. IEEE Access 6:883–898. https://doi.org/10.1109/ACCESS.2017.2776295 [Online]

    Article  Google Scholar 

  18. Silla CN, Pappa GL, Freitas AA, Kaestner CA (2004) Automatic text summarization with genetic algorithm-based attribute selection. In: Ibero-American Conference on Artificial Intelligence. Springer, pp. 305–314. [Online]. https://doi.org/10.1007/978-3-540-30498-2_31

  19. Das AK, Pati SK, Ghosh A (2019) Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm. In: Knowledge and Information Systems, pp. 1–33, [Online]. https://doi.org/10.1007/s10115-019-01341-6

  20. Fonseca CM, Fleming PJ (1995) An overview of evolutionary algorithms in multiobjective optimization. Evolut Comput 3(1):1–16. https://doi.org/10.1162/evco.1995.3.1.1 [Online]

    Article  Google Scholar 

  21. Zitzler E, Laumanns M, Thiele L (2001) Spea2: improving the strength pareto evolutionary algorithm. In: TIK-report vol. 103, [Online]. https://doi.org/10.3929/ethz-a-004284029

  22. Lu H, Zhang M, Fei Z, Mao K (2015) Multi-objective energy consumption scheduling in smart grid based on tchebycheff decomposition. IEEE Trans Smart Grid 6(6):2869–2883. https://doi.org/10.1109/TSG.2015.2419814 [Online]

    Article  Google Scholar 

  23. Ma X, Zhang Q, Tian G, Yang J, Zhu Z (2017) On tchebycheff decomposition approaches for multiobjective evolutionary optimization. IEEE Trans Evolut Comput 22(2):226–244. https://doi.org/10.1109/TEVC.2017.2704118 [Online]

    Article  Google Scholar 

  24. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657. https://doi.org/10.1137/S1052623496307510 [Online]

    Article  Google Scholar 

  25. Shukla PK (2007) On the normal boundary intersection method for generation of efficient front. In: International Conference on Computational Science. Springer, pp. 310–317 [Online] https://doi.org/10.1007/978-3-540-72584-8_40

  26. Sanchis J, Martínez M, Blasco X, Salcedo JV (2008) A new perspective on multiobjective optimization by enhanced normalized normal constraint method. Struct Multidiscip Optim 36(5):537–546. https://doi.org/10.1007/s00158-007-0185-4 [Online]

    Article  Google Scholar 

  27. Sun S, Luo C, Chen J (2017) A review of natural language processing techniques for opinion mining systems. Inform Fus 36:10–25. https://doi.org/10.1016/j.inffus.2016.10.004 [Online]

    Article  Google Scholar 

  28. Otter DW, Medina JR, Kalita JK (2020) A survey of the usages of deep learning for natural language processing. In: IEEE Transactions on Neural Networks and Learning Systems [Online]. https://doi.org/10.1109/TNNLS.2020.2979670

  29. Navigli R, Velardi P (2005) Structural semantic interconnections: a knowledge-based approach to word sense disambiguation. IEEE Trans Pattern Anal Mach Intell 27(7):1075–1086. https://doi.org/10.1109/TPAMI.2005.149 [Online]

    Article  PubMed  Google Scholar 

  30. Budanitsky A, Hirst G (2006) Evaluating wordnet-based measures of lexical semantic relatedness. Comput Ling 32(1):13–47. https://doi.org/10.1162/coli.2006.32.1.13 [Online]

    Article  Google Scholar 

  31. Mallick C, Dutta M, Das AK, Sarkar A, Das AK (2019) Extractive summarization of a document using lexical chains. In: Soft Computing in Data Analytics. Springer, pp. 825–836 [Online] https://doi.org/10.1007/978-981-13-0514-6_78

  32. Kaikhah K (2004) Automatic text summarization with neural networks. In: Intelligent systems, 2004. Proceedings 2004 2nd International IEEE Conference, vol. 1, pp. 40–44 [Online] https://doi.org/10.1109/IS.2004.1344634

  33. Patel M, Chokshi A, Vyas S, Maurya K (2018) Machine learning approach for automatic text summarization using neural networks. Int J Adv Res Comput Commun Eng 7(1) [Online] https://doi.org/10.17148/IJARCCE.2018.7132

  34. Suleiman D, Awajan AA (2019) Deep learning based extractive text summarization: approaches, datasets and evaluation measures. In: 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). IEEE, pp. 204–210 [Online] https://doi.org/10.1109/SNAMS.2019.8931813

  35. Li J, Li S (2013) A novel feature-based bayesian model for query focused multi-document summarization. Trans Assoc Comput Ling 1:89–98. https://doi.org/10.1162/tacl_a_00212 [Online]

    Article  Google Scholar 

  36. Conroy JM, O’leary DP (2001) Text summarization via hidden markov models. In: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 406–407. [Online]. https://doi.org/10.1145/383952.384042

  37. Mendoza M, Bonilla S, Noguera C, Cobos C, León E (2014) Extractive single-document summarization based on genetic operators and guided local search. Expert Syst Appl 41(9):4158–4169. https://doi.org/10.1016/j.eswa.2013.12.042

    Article  Google Scholar 

  38. McDonald R (2007) A study of global inference algorithms in multi-document summarization. In: European Conference on Information Retrieval. Springer, pp. 557–564 [Online] https://doi.org/10.1007/978-3-540-71496-5_51

  39. Davis ST, Conroy JM, Schlesinger JD (2012) Occams–an optimal combinatorial covering algorithm for multi-document summarization. In: 2012 IEEE 12th International Conference on Data Mining Workshops. IEEE, pp. 454–463 [Online] https://doi.org/10.1109/ICDMW.2012.50

  40. Plaza L, Díaz A, Gervás P (2011) A semantic graph-based approach to biomedical summarisation. Artif Intel Med 53(1):1–14. https://doi.org/10.1016/j.artmed.2011.06.005 [Online]

    Article  Google Scholar 

  41. Moradi M, Ghadiri N (2018) Different approaches for identifying important concepts in probabilistic biomedical text summarization. Artif Intel Med 84:101–116. https://doi.org/10.1016/j.artmed.2017.11.004 [Online]

    Article  Google Scholar 

  42. Afantenos S, Karkaletsis V, Stamatopoulos P (2005) Summarization from medical documents: a survey. Artif Intell Med 33(2):157–177. https://doi.org/10.1016/j.artmed.2004.07.017 [Online]

    Article  PubMed  Google Scholar 

  43. Mishra R, Bian J, Fiszman M, Weir CR, Jonnalagadda S, Mostafa J, Del Fiol G (2014) Text summarization in the biomedical domain: a systematic review of recent research. J Biomed Inform 52:457–467. https://doi.org/10.1016/j.jbi.2014.06.009 [Online]

    Article  PubMed  Google Scholar 

  44. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG (2010) Mayo clinical text analysis and knowledge extraction system (ctakes): architecture, component evaluation and applications. J Am Med Inform Assoc 17(5):507–513. https://doi.org/10.1136/jamia.2009.001560 [Online]

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rindflesch TC, Fiszman M (2003) The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J Biomed Inform 36(6):462–477. https://doi.org/10.1016/j.jbi.2003.11.003 [Online]

    Article  PubMed  Google Scholar 

  46. Aronson AR, Lang F-M (2010) An overview of metamap: historical perspective and recent advances. J Am Med Inform Assoc 17(3):229–236. https://doi.org/10.1136/jamia.2009.002733 [Online]

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, Liu S, Zeng Y, Mehrabi S, Sohn S et al (2018) Clinical information extraction applications: a literature review. J Biomed Inform 77:34–49. https://doi.org/10.1016/j.jbi.2017.11.011 [Online]

    Article  PubMed  Google Scholar 

  48. Yoo I, Hu X, Song I-Y (2007) A coherent graph-based semantic clustering and summarization approach for biomedical literature and a new summarization evaluation method. BMC Bioinform no. 9. BioMed Central, p. S4. [Online] https://doi.org/10.1186/1471-2105-8-S9-S4

  49. Fiszman M, Demner-Fushman D, Kilicoglu H, Rindflesch TC (2009) Automatic summarization of medline citations for evidence-based medical treatment: A topic-oriented evaluation. J Biomed Inform 42(5):801–813. https://doi.org/10.1016/j.jbi.2008.10.002 [Online]

    Article  PubMed  Google Scholar 

  50. Mollá D, Santiago-Martínez ME, Sarker A, Paris C (2016) A corpus for research in text processing for evidence based medicine. Lang Resour Evaluat 50(4):705–727. https://doi.org/10.1007/s10579-015-9327-2 [Online]

    Article  Google Scholar 

  51. Yongkiatpanich C, Wichadakul D (2019) Extractive text summarization using ontology and graph-based method. In: 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). IEEE, pp. 105–110 [Online] https://doi.org/10.1109/CCOMS.2019.8821755

  52. Plaza L, Jimeno-Yepes AJ, Diaz A, Aronson AR (2011) Studying the correlation between different word sense disambiguation methods and summarization effectiveness in biomedical texts,” vol. 12, no. 1. Springer, p. 355 [Online] https://doi.org/10.1186/1471-2105-12-355

  53. Reeve L, Han H, Brooks AD (2006) Biochain: lexical chaining methods for biomedical text summarization. In: Proceedings of the 2006 ACM symposium on Applied computing. ACM, pp. 180–184. [Online]. https://doi.org/10.1145/1141277.1141317

  54. Reeve LH, Han H, Nagori SV, Yang JC, Schwimmer TA, Brooks AD (2006) Concept frequency distribution in biomedical text summarization. In: Proceedings of the 15th ACM international conference on Information and knowledge management. ACM, pp. 604–611. [Online]. https://doi.org/10.1145/1183614.1183701

  55. Cohan A, Goharian N (2017) Contextualizing citations for scientific summarization using word embeddings and domain knowledge. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1133–1136. [Online] https://doi.org/10.1145/3077136.3080740

  56. Das AK, Sil J (2011) An efficient classifier design integrating rough set and set oriented database operations. Appl Soft Comput 11(2):2279–2285. https://doi.org/10.1016/j.asoc.2010.08.008 [Online]

    Article  Google Scholar 

  57. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C (Appl Rev) 42(4):463–484. https://doi.org/10.1109/TSMCC.2011.2161285 [Online]

    Article  Google Scholar 

  58. Zou D, Wu J, Gao L, Li S (2013) A modified differential evolution algorithm for unconstrained optimization problems. Neurocomputing 120:469–481. https://doi.org/10.1016/j.neucom.2013.04.036 [Online]

    Article  Google Scholar 

  59. Li M, Chen H, Wang X, Zhong N, Lu S et al (2019) An improved particle swarm optimization algorithm with adaptive inertia weights. Int J Inform Technol Decis Making (IJITDM) 18(03):833–866. https://doi.org/10.1142/S0219622019500147

    Article  Google Scholar 

  60. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13(2):398–417. https://doi.org/10.1109/TEVC.2008.927706 [Online]

    Article  Google Scholar 

  61. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. IEEE Trans Evolut Comput 13(2):284–302. https://doi.org/10.1109/TEVC.2008.925798 [Online]

    Article  Google Scholar 

  62. Sivasubramani S, Swarup K (2011) Multi-objective harmony search algorithm for optimal power flow problem. Int J Elect Power Energy Syst 33(3):745–752. https://doi.org/10.1016/j.ijepes.2010.12.031 [Online]

    Article  Google Scholar 

  63. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolut Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759 [Online]

    Article  Google Scholar 

  64. Loper E, Bird S (2002) Nltk: the natural language toolkit,” arXiv preprint cs/0205028, [Online]. https://doi.org/10.3115/1118108.1118117

  65. Goswami S, Murthy C, Das AK (2018) Sparsity measure of a network graph: Gini index. Inform Sci 462:16–39. https://doi.org/10.1016/j.ins.2018.05.044 [Online]

    Article  Google Scholar 

  66. Zonoobi D, Kassim AA, Venkatesh YV (2011) Gini index as sparsity measure for signal reconstruction from compressive samples. IEEE J Select Top Signal Process 5(5):927–932. https://doi.org/10.1109/JSTSP.2011.2160711 [Online]

    Article  Google Scholar 

  67. Neto JL, Freitas AA, Kaestner CA (2002) Automatic text summarization using a machine learning approach. In Brazilian symposium on artificial intelligence. Springer, pp. 205–215. [Online]. https://doi.org/10.1007/3-540-36127-8_20

  68. Zajic DM, Dorr BJ, Lin J (2008) Single-document and multi-document summarization techniques for email threads using sentence compression. Inform Process Manag 44(4):1600–1610. https://doi.org/10.1016/j.ipm.2007.09.007 [Online]

    Article  Google Scholar 

  69. Yousefi-Azar M, Hamey L (2017) Text summarization using unsupervised deep learning. Expert Syst Appl 68:93–105. https://doi.org/10.1016/j.eswa.2016.10.017 [Online]

    Article  Google Scholar 

  70. Bird S (2006) Nltk: the natural language toolkit steven. In Proceedings of the COLING/ACL on Interactive presentation sessions, pp. 69–72. [Online]. https://doi.org/10.3115/1225403.1225421

  71. He T, Chen J, Ma L, Gui Z, Li F, Shao W, Wang Q (2008) Rouge-c: a fully automated evaluation method for multi-document summarization. In: 2008 IEEE International Conference on Granular Computing, pp. 269–274. [Online]. https://doi.org/10.1109/GRC.2008.4664680

  72. Reeve LH, Han H, Brooks AD (2007) The use of domain-specific concepts in biomedical text summarization. Inform Process Manag 43(6):1765–1776. https://doi.org/10.1016/j.ipm.2007.01.026 [Online]

    Article  Google Scholar 

  73. Thalhammer A, Stadtmüller S (2015) Summa: a common api for linked data entity summaries. Int Conf Web Eng Springer, pp. 430–446. [Online]. https://doi.org/10.1007/978-3-319-19890-3_28

  74. Nandhini K, Balasundaram SR (2013) Use of genetic algorithm for cohesive summary extraction to assist reading difficulties. Appl Comput Intell Soft Comput 2013, [Online]. https://doi.org/10.1155/2013/945623

  75. Kanakaraj M, Guddeti RMR (2015) Nlp based sentiment analysis on twitter data using ensemble classifiers. In: 2015 3rd International Conference on Signal Processing, Communication and Networking (ICSCN). IEEE, pp. 1–5. [Online]. https://doi.org/10.1109/ICSCN.2015.7219856

  76. Ingason AK, Helgadóttir S, Loftsson H, Rögnvaldsson E (2008) A mixed method lemmatization algorithm using a hierarchy of linguistic identities (holi). In: International Conference on Natural Language Processing. Springer, pp. 205–216. [Online]. https://doi.org/10.1007/978-3-540-85287-2_20

  77. Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201. https://doi.org/10.1016/S0034-4257(01)00295-4 [Online]

    Article  Google Scholar 

Download references

Acknowledgements

We did not receive any Grant for this research work specifically from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Das.

Ethics declarations

Conflict of interest

There are no conflict of interest from authors’ side.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, C., Das, A.K., Nayak, J. et al. Evolutionary Algorithm based Ensemble Extractive Summarization for Developing Smart Medical System. Interdiscip Sci Comput Life Sci 13, 229–259 (2021). https://doi.org/10.1007/s12539-020-00412-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00412-5

Keywords

Navigation