Skip to main content

Advertisement

Log in

Opportunities and challenges of Eucalyptus plantations in Europe: the Iberian Peninsula experience

  • Review Article
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Although native to Australia, Eucalyptus species are found throughout Europe. At present, they are located mainly in the Iberian Peninsula and Eucalyptus globulus is the most commonly planted species. Climate forecasts anticipate an expansion of Eucalyptus to other regions of Europe. The fast growth of E. globulus, together with its resprouting ability and wood properties, has promoted the use of this species in the Iberian Peninsula. The total volume of E. globulus harvested there was close to 14 million m3 in 2019. Eucalyptus species represent the main source of raw material for the pulp and paper industries and provide an important source of income to non-industrial owners. Being exotic fast-growing trees, their expansion has also been associated with negative environmental impacts. The species therefore poses a series of challenges, while also generating opportunities. The objectives of this review paper are: (1) to summarize the importance of Eucalyptus plantations in Europe; (2) to analyse the opportunities and challenges of this genus in present and future plantations in Europe; (3) to assess to what extent forest management, at both stand and landscape levels, can reduce negative impacts; (4) to make policy and management recommendations that may support the use of this genus in other European regions. These aims are accomplished based on a thorough literature review, particularly focused on research developed in the Iberian Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. RÉseau INFrastructure de recherche pour le suivi et l’adaptation des FORêts au Changement climatiquE.

References

  • Abelho M, Graça MAS (1996) Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324:195–204. https://doi.org/10.1007/bf00016391

    Article  Google Scholar 

  • AFN (2010) Relatório Final do 5° Inventário Florestal Nacional Autoridade Florestal . Nacional, Lisbon, Portugal

    Google Scholar 

  • Águas A, Ferreira A, Maia P, Fernandes PM, Roxo L, Keizer J, Silva JS, Rego FC, Moreira F (2014) Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For Ecol Manage 323:47–56. https://doi.org/10.1016/j.foreco.2014.03.012

    Article  Google Scholar 

  • Águas A, Larcombe MJ, Matias H, Deus E, Potts BM, Rego FC, Silva JS (2017) Understanding the naturalization of Eucalyptus globulus in Portugal: a comparison with Australian plantations. Eur J Forest Res 3(136):433–446. https://doi.org/10.1007/s10342-017-1043-6

    Article  Google Scholar 

  • Almeida AP, Riekerk H (1990) Water balance of Eucalyptus globulus and Quercus suber forest stands in south Portugal. For Ecol Manage 38(1–2):55–64. https://doi.org/10.1016/0378-1127(90)90085-P

    Article  Google Scholar 

  • Almeida MH, Pereira H, Miranda I, Tomé M (1995) Provenance trials of Eucalyptus globulus Labill. in Portugal. In: Potts BM, Borralho NM, Reid JB, Cromer RN, Tibbits WN, Raymond CA (eds) Proceedings of the CRCTHF-IUFRO Conference eucalypt plantations: improving fibre yield and quality pp 195–198

  • Almeida MH, Araújo C, Araújo JA, Costa e Silva F, Neves I, Paiva V, Santiago A, Ribeiro D, (2005) Melhoramento genético do eucalipto: que impacto na realidade? In: Silva R, Páscoa F (eds) A Floresta e as gentes, 5° Congresso Florestal Nacional. Sociedade Portuguesa de Ciências Florestais, Viseu, Portugal, pp 145–146

    Google Scholar 

  • Araújo J, Meierrose C, Carvalho AS (1985) Distribuição de Phoracantha semipunctata Fab. (Coleoptera, Cerambycidae) no sul de Portugal - observações preliminares. Atas do II Congresso Ibérico de Entomologia. Bol Soc Port Entomol 4:317–322

    Google Scholar 

  • Araújo MB (1995) The effect of Eucalyptus globulus Labill. plantations on biodiversity: a case study in Serra Portel (South Portugal). Dissertation, University College London

  • Aravanopoulos FA (2010) Breeding of fast growing forest tree species for biomass production in Greece. Biomass Bioenerg 24:1531–1537. https://doi.org/10.1016/j.biombioe.2010.06.012

    Article  Google Scholar 

  • Arellano S, Vega JA, Ruiz AD, Arellano A, Álvarez JG, Vega DJ, Pérez E (2016) Foto-guía de combustibles forestales de Galicia y comportamiento del fuego asociado. Andavira Editora, Santiago de Compostela

    Google Scholar 

  • Azevedo F, Figo ML (1979) Ctenarytaina eucalypti Mask (Homoptera, Psyllidae). Bol Serv Plagas Forestales 5:41–46

    Google Scholar 

  • Bärlocher F, Graca MA (2002) Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshwat Biol 47:1123–1135. https://doi.org/10.1046/j.1365-2427.2002.00836.x

    Article  Google Scholar 

  • Barradas C, Pinto G, Correia B, Castro B, Phillips AJ, Alves A (2018) Drought × disease interaction in Eucalyptus globulus under Neofusicoccum eucalyptorum infection. Plant Pathol 67:87–96. https://doi.org/10.1111/ppa.12703

    Article  CAS  Google Scholar 

  • Barradas C, Pinto G, Correia B, Jesus C, Alves A (2019) Impact of Botryosphaeria, diplodia and Neofusicoccumspecies on two eucalyptus species and a hybrid: from pathogenicity to physiological performance. For Path e12493. https://doi.org/https://doi.org/10.1111/efp.12493

  • Barreiro S, Tomé M (2011) SIMPLOT: simulating the impacts of fire severity on sustainability of Eucalyptus forests in Portugal. Ecol Indic 11:36–45. https://doi.org/10.1016/j.ecolind.2009.06.015

    Article  Google Scholar 

  • Barreiro S, Rua J, Tomé M (2016) StandsSIM-MD: a Management Driven forest SIMulator. Forest Systems 25(2), eRC07. https://doi.org/https://doi.org/10.5424/fs/2016252-08916

  • Becerra PI et al (2018) Inhibitory effects of Eucalyptus globulus on understorey plant growth and species richness are greater in non-native regions. Global Ecol Biogeogr 27:68–76. https://doi.org/10.1111/geb.12676

    Article  Google Scholar 

  • Blanco-Dios JB (2012) Especies comestibles que se poden encontrar en platacións de eucalipto. Tarrelos 14:31–33

    Google Scholar 

  • Bongiorno SF (1982) Land use and summer bird populations in northwestern Galicia Spain. Ibis 124:1–20. https://doi.org/10.1111/j.1474-919X.1982.tb03736.x

    Article  Google Scholar 

  • Booth TH (2013) Eucalypt plantations and climate change. For Ecol Manage 301:28–34. https://doi.org/10.1016/j.foreco.2012.04.004

    Article  Google Scholar 

  • Borralho NMG, Cotterill PP (1994) Genetic improvement of Eucalyptus globulus for pulp production. In: Pereira JS, Pereira H (eds) Eucalyptus for biomass production. Commission of the European Communities, pp 85–99

  • Borralho NMG, Almeida MH, Potts BM (2007) O melhoramento do eucalipto em Portugal. In: Alves AM, Pereira JS, Silva JMN (eds) O eucalipto em Portugal - impactes ambientais e investigação científica. ISA Press, Lisboa, pp 61–112

    Google Scholar 

  • Branco M, Bragança H, Sousa E, Phillips AJ (2014) Pests and diseases in Portuguese forestry: current and new threats. In: Forest Context and Policies in Portugal, Springer International Publishing, pp 117–154

  • Branco M, Brockerhoff EG, Castagneyrol B, Orazio C, Jactel H (2015) Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. J Applied Ecol 52:69–77. https://doi.org/10.1111/1365-2664.12362

    Article  Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB (2013) Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manage 301:43–50

    Article  Google Scholar 

  • Brus R, Pötzelsberger E, Lapin K, Brundu G, Orazio C, Straigyte L, Hasenauer H (2019) Extent, distribution and origin of non-native forest tree species in Europe. Scand J For Res. https://doi.org/10.1080/02827581.2019.1676464

    Article  Google Scholar 

  • Cabral MT (1983) Contribuição para o estudo da biodegradação das toiças de Eucalyptus globulus Labill. Dissertation, Universidade Técnica Lisboa, Portugal

  • Cabral MT, Martins SC (1985) Estudo comparativo da fauna do solo de povoamentos de Eucalyptus globulus Labill. de várias idades e de Pinus pinaster Ait. Bol Soc Port Entomologia 3:75–84

    Google Scholar 

  • Calviño-Cancela M (2013) Effectiveness of eucalypt plantations as a surrogate habitat for birds. For Ecol Manage 310:692–699. https://doi.org/10.1016/j.foreco.2013.09.014

    Article  Google Scholar 

  • Calviño-Cancela M, Rubido-Bará M, Van Etten EJB (2012) Do eucalypt plantations provide habitat for native forest biodiversity? For Ecol Manage 270:153–162. https://doi.org/10.1016/j.foreco.2012.01.019

    Article  Google Scholar 

  • Calviño-Cancela M, Rubido-Bará M (2013) Invasive potential of Eucalyptus globulus: seed dispersal, seedling recruitment and survival in habitats surrounding plantations. For Ecol Manage 305:129–137

    Article  Google Scholar 

  • Calviño-Cancela M, de Silanes MEL, Rubido-Bará M, Uribarri J (2013) The potential role of tree plantations in providing habitat for lichen epiphytes For Ecol. Manage 291:386–395

    Google Scholar 

  • Calviño-Cancela M, Lorenzo P, González L (2018) Fire increases Eucalyptus globulus seedling recruitment in forested habitats: effects of litter, shade and burnt soil on seedling emergence and survival. For Ecol Manage 409:826–834

    Article  Google Scholar 

  • Calviño-Cancela M, Neumann M, López De Silanés ME (2020) Contrasting patterns of lichen abundance and diversity in Eucalyptus globulus and Pinus pinaster plantations with tree age. For Ecol Manage 462:117994. https://doi.org/10.1016/j.foreco.2020.117994

    Article  Google Scholar 

  • Canhoto C, Graça MA (1996) Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333:79–85

    Article  CAS  Google Scholar 

  • Carneiro M, Fabião A, Martins MC, Cerveira C, Santos C, Nogueira C, Lousa M, Hilário L, Fabião A, Abrantes M, Madeira M (2007) Species richness and biomass of understory vegetation in a Eucalyptus globulus Labill. coppice as affected by slash management. Eur J For Res 126:475–480

    Article  Google Scholar 

  • Carneiro A, Fabião A, Martins MC, Fabião A, da Silva MA, Hilário L, Lousa M, Madeira M (2008) Effects of harrowing and fertilisation on understory vegetation and timber production of a Eucalyptus globulus Labill. plantation in Central Portugal. For Ecol Manage 255:591–597

    Article  Google Scholar 

  • Carneiro M, Serrão V, Fabião A, Madeira M, Balsemão I, Hilário L (2009) Does harvest residue management influence biomass and nutrient accumulation in understory vegetation of Eucalyptus globulus Labill. plantations in a Mediterranean environment? For Ecol Manage 257:527–535

    Article  Google Scholar 

  • Castro-Díez P, Fierro-Brunnenmeister N, González-Muñoz N, Gallardo A (2012) Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191

    Article  Google Scholar 

  • Catry FX, Moreira F, Tujeira R, Silva JS (2013) Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. For Ecol Manage 310:194–203

    Article  Google Scholar 

  • Catry FX, Moreira F, Deus E, Silva JS, Águas A (2015) Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biol Invasions 17:3163–3181

    Article  Google Scholar 

  • CELPA (2019) Boletim Estatístico da Indústria Papeleira Portuguesa. Celpa, Lisboa Portugal, p 112

    Google Scholar 

  • Cerveira C, Lousã M, Fabião A, Madeira M, Tomé M (1999) Influência de técnicas de instalação e condução do eucaliptal na diversidade da vegetação sob coberto. Rev Cienc Agrar 22:49–63

    Google Scholar 

  • Chambers PGS, Borralho NMG (1997) Importance of survival in short-rotation tree breeding programs. Can J For Res 27:911–917

    Article  Google Scholar 

  • Chauvet E, Fabre E, Elósegui A, Pozo J (1997) The impact of eucalypt on the leaf-associated aquatic hyphomycetes in Spanish streams. Canadian J Botany 75:880–887. https://doi.org/10.1139/b97-097

    Article  Google Scholar 

  • Chauzat MP, Purvis G, Dunne R (2002) Release and establishment of a biological control agent, Psyllaephagus pilosus for eucalyptus psyllid (Ctenarytaina eucalypti) in Ireland. Ann Appl Biol 141:293–304

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Osorio J (2004) Water use efficiency and photosynthesis. In: Bacon M (ed) Water use efficiency in plant biology. Blackwell Publishing, London, pp 42–74

    Google Scholar 

  • Cordero-Rivera A, Martínez-Álvarez A, Álvarez M (2017) Eucalypt plantations reduce the diversity of macroinvertebrates in small forested streams. Anim Biodiv Conserv 40:87–97

    Article  Google Scholar 

  • Correia AC, Pereira JS, Mateus J, Pita G, Rodrigues A, Miranda P, Correia AV (2007) Influência das alterações climáticas na cultura do eucalipto: cenários possíveis. In: Alves AM, Pereira JS, Silva JMN (eds) O eucalipto em Portugal - impactes ambientais e investigação científica. ISA Press, Lisboa, pp 357–379

    Google Scholar 

  • Correia AH, Almeida MH, Branco M et al (2018a) Early survival and growth plasticity of 33 species planted in 38 arboreta across the European Atlantic Area. Forests 9(10):630. https://doi.org/10.3390/f9100630

    Article  Google Scholar 

  • Correia B, Valledor L, Hancock R, Renault J, Pascual J, Soares AMVM, Pinto G (2016) Integrated proteomics and metabolomics to unlock global and clonal responses of Eucalyptus globulus recovery from water deficit. Metabolomics 12(8):1–12

    Article  CAS  Google Scholar 

  • Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto G (2018) Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone. Front Plant Sci 9.

  • Costa R, Fraga H, Fernandes PM, Santos JA (2017) Implications of future bioclimatic shifts on Portuguese forests. Reg Environ Change 7(1):117–127

    Article  Google Scholar 

  • David JS, Henriques MO, David T, Tomé J, Ledger DC (1994) Clearcutting effects on streamflow in coppiced Eucalyptus globulus stands in Portugal. J Hydrol 162:143–154

    Article  Google Scholar 

  • David JS, David TS, Valente F (2007) O eucaliptal e os recursos hídricos. In: Alves AM, Pereira JS, Silva JMN (eds) O Eucalipto em Portugal - Impactes Ambientais e Investigação Científica. ISA Press, Lisboa, pp 113–135

    Google Scholar 

  • David TS, Ferreira MI, David JS, Pereira JS (1997) Transpiration from a mature Eucalyptus globulus plantation in Portugal during a spring-summer period of progressively higher water deficit. Oecologia 110:153–159

    CAS  PubMed  Google Scholar 

  • del Moral R, Muller CH (1969) Fog drip: a mechanism of toxin transport from Eucalyptus globulus. B Torrey Bot Club 467–475

  • Deus E, Silva JS, Catry FX, Rocha M, Moreira F (2016) Google Street View as an alternative method to car surveys in large-scale vegetation assessments. Environ Monit Assess 188:1–14

    Article  Google Scholar 

  • Deus E, Silva JS, Castro-Díez P, Lomba A, Ortiz ML, Vicente J (2018) Current and future conflicts between eucalypt plantations and high biodiversity areas in the Iberian Peninsula. J Nature Conserv 45:107–117

    Article  Google Scholar 

  • Deus E, Silva JS, Marchante H, Marchante E, Félix C (2018) Are post-dispersed seeds of Eucalyptus globulus predated in the introduced range? Evidence from an experiment in Portugal. Web Ecol 18(1):67–79

    Article  Google Scholar 

  • Deus E, Silva JS, Larcombe MJ, Catry F, Queirós L, Santos P, Matias H, Águas A, Rego F (2019) Investigating the invasiveness of Eucalyptus globulus in Portugal: site-scale drivers, reproductive capacity and dispersal potential. Biol Invasions 21:2027–2044

    Article  Google Scholar 

  • Díaz-Balteiro L, Bertomeu M, Bertomeu M (2009) Optimal harvest scheduling in Eucalyptus plantations A case study in Galicia (Spain). Forest Policy Econ 11:548–554

    Article  Google Scholar 

  • Díaz-Balteiro L, Bertomeu M, Ezquerro M, Giménez J, González-Pachón J, Romero C (2016) Using quantitative techniques to evaluate and explain the sustainability of forest plantations. Can J For Res 46(9):1157–1166

    Article  Google Scholar 

  • Díaz O (2016) Modelling the potential distribution and naturalization of Eucalyptus globulus in the Iberian Peninsula. Dissertation, Alcalá University, Spain

  • Dillner B, Ljunger A, Herub OA, Thune-Larsen E (1971) The breeding of Eucalyptus globulus on the basis of wood density, chemical composition and growth rate. In Symposium on the Production and Industrial Utilization of Eucalyptus, pp 120–153. Genéve: United Nations

  • Domingues RMA, Sousa GDA, Silva CMM, Freire CSR, Silvestre AJD, Neto CP (2011) High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal. Ind. Crops Prod. 33:158–164. https ://doi.org/https://doi.org/10.1016/j.indcr op.2010.10.006

  • Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) Eucalypt domestication and breeding. Claredon Press, Oxford

    Google Scholar 

  • Fabião A, Carneiro M, Lousã M, Madeira M (2007) Os impactes do eucaliptal na biodiversidade da vegetação sob coberto. In: Alves AM, Pereira JS, Silva JMN (eds) O Eucalipto em Portugal - Impactes Ambientais e Investigação Científica. ISA Press, Lisboa, pp 178–206

    Google Scholar 

  • Fabião A, Martins MC, Cerveira C, Santos C, Lousã M, Madeira M, Correia A (2002) Influence of soil and organic residue management on biomass and biodiversity of understory vegetation in a Eucalyptus globulus Labill. plantation. For Ecol Manage 171:87–100. https://doi.org/10.1016/s0378-1127(02)00463-2

    Article  Google Scholar 

  • Faias SP, Palma JHN, Barreiro S, Paulo JAP, Tomé M (2012) sIMfLOR - platform for Portuguese forest simulators. For Syst 21:543–548

    Google Scholar 

  • Fernandes P (2013) Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landscape and Urban Planning 110:175–182

    Article  Google Scholar 

  • Fernandes P, Davies GM, Ascoli D, Fernández C, Moreira F, Rigolot E, Molina D (2013) Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Frontiers Ecol Environ 11(s1):e4–e14

    Article  Google Scholar 

  • Fernandes P, Antunes C, Pinho P, Máguas C, Correia O (2016) Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. For Ecol Manage 378:91–102

    Article  Google Scholar 

  • Fernandes P, Máguas C, Correia O (2017) Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus. Plant Ecol 218(5):501–515

    Article  Google Scholar 

  • Fernandes P, Máguas C, Correia O, González-Moreno P (2018) What drives Eucalyptus globulus natural establishment outside plantations? The relative importance of climate, plantation and site characteristics. Biol Invasions 20:1129–1146

    Article  Google Scholar 

  • Fernandes P, Guiomar N, Rossa CG (2019) Analysing eucalypt expansion in Portugal as a fire-regime modifier. Sci Total Environ 666:79–88

    Article  CAS  PubMed  Google Scholar 

  • Fernández C, Vega JA, Gras JM, Fonturbel T (2006) Changes in water yield after a sequence of perturbations and forest management practices in an Eucalyptus globulus Labill. watershed in Northern Spain. For Ecol Manage 234:275–281

    Article  Google Scholar 

  • Ferreira AJD, Coelho COA, Walsh RPD, Shakesby RA, Ceballos A, Doerr SH (2000) Hydrological implications of soil water-repellency in Eucalyptus globulus forests, north-central Portugal. J Hydrology 231–232:165–177

    Article  Google Scholar 

  • Ferreira MC (1998) Manual dos insectos nocivos às plantações florestais. Plátano Editora, Lisboa

    Google Scholar 

  • Ferreira V, Koricheva J, Pozo J, Graça MA (2016) A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. For Ecol Manage 364:27–38

    Article  Google Scholar 

  • Florence RG (1986) Cultural problems of eucalyptus as exotics. Commonw Forest Rev 65:141–163

    Google Scholar 

  • FS-DAFM, (2018) Ireland’s National Forest Inventory 2017- Results. Forest Service, Department of Agriculture Food and the Marine, Wexford, Ireland

    Google Scholar 

  • Ganteaume A, Lampin-Maille C, Guijarro M, Hernando C, Jappiot M, Fonturbel T, Pérez-Gorostiaga P, Veja JA (2010) Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds. Int J Wildland Fire 18:951–969

    Article  Google Scholar 

  • García-Villabrille JD (2015) Modelización del crecimiento y la producción de plantaciones de Eucalyptus globulus Labill. en el noroeste de España. Dissertation, University of Santiago de Compostela

  • Goded S, Ekroos J, Domínguez J, Azcárate JG, Guitián JA, Smith HG (2019) Effects of eucalyptus plantations on avian and herb species richness and composition in North-West Spain. Global Ecol Conserv 19:e00690. https://doi.org/10.1016/j.gecco.2019.e00690

    Article  Google Scholar 

  • Goes E (1977) Os eucaliptos (ecologia, cultura, produções e rentabilidade). Portucel, Lisboa

    Google Scholar 

  • Gómez-García E, Diéguez-Aranda U, Cunha M, Rodríguez-Soalleiro R (2016) Comparison of harvest-related removal of aboveground biomass, carbon and nutrients in pedunculate oak stands and in fast-growing tree stands in NW Spain. For Ecol Manage 365(1):119–127

    Article  Google Scholar 

  • Gonçalves CI, Vilas-Boas L, Branco M, Rezende GD, Valente C (2019) Host susceptibility to Gonipterus platensis (Coleoptera: Curculionidae) of Eucalyptus species. Annals For Sci 76(3):63

    Article  Google Scholar 

  • Gouveia C, Camara C, Trigo R (2010) Post-fire vegetation recovery in Portugal based on spot/vegetation data. Nat Hazard Earth Syst 10:673–684

    Article  Google Scholar 

  • Gras JM, Vega JA, Bará S (1993) Six years of study on fast growing forest plantations catchments in the Northwest of Spain. Acta Geolog Hispan 28(2–3):111–117

    Google Scholar 

  • Harvengt L, Alazard P, Fraysse J-Y, de Boissesson J-M, Fauconnier T, Canlet F, Reymond I, Durandeau K, Debille S, Melun F, Tronti J-F, Bailly A, Vidal M (2017) Breeding of deep frost-tolerant eucalyptus for sustainable biomass production under climate change. Poster at the IUFRO 125th Anniversary Congress, Freiburg, Germany, Session no 153 - Genetics and Genomics for Conservation, Climate Adaptation and Sustainable Management of forests, Abstract book pg 382

  • Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933

    Article  Google Scholar 

  • ICNF (2015) Áreas ardidas anuais por tipo de ocupação do solo. Instituto da Conservação da Natureza e das Florestas, Lisboa, Portugal

    Google Scholar 

  • ICNF (2019) 6° Inventário Florestal Nacional - Relatório Final. Instituto da Conservação da Natureza e das Florestas Lisboa, Portugal

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the 5th Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, RK Pachauri, LA Meyer (eds). Geneva, Switzerland

  • Jacobs MR (1955) Growth habits of the eucalypts. Forestry and Timber Bureau, Canberra, Australia

    Google Scholar 

  • Jiménez E, Vega J, Fernández C, Pérez-Gorostiaga P, Cuiñas P, Fonturbel T, Alonso M, Rozados M, Bará S (2012) Changes in Eucalyptus globulus Labill. saplings growth and physiological parameters following fire-induced stem and crown damage in a plantation in north-western Spain. Eur J Forest Res 131:1967–1978. https://doi.org/10.1007/s10342-012-0647-0

    Article  Google Scholar 

  • Jones HE, Madeira M, Herraez L, Dighton J, Fabião A, Gonzalez-Rio F, Marcos MF, Gomez C, Tomé M, Feith H, Magalhães MC, Howson G (1999) The effect of organic-matter management on the productivity of Eucalyptus globulus stands in Spain and Portugal: tree growth and harvest residue decomposition in relation to site and treatment. For Ecol Manage 122:73–86. https://doi.org/10.1016/s0378-1127(99)00033-x

    Article  Google Scholar 

  • Larcombe MJ, Silva JS, Vaillancourt RE, Potts BM (2013) Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biol Invasions 15:2763–2781

    Article  Google Scholar 

  • Leslie A, Mencuccini M, Perks MP (2013) Growth and Survival of provenances of snow gums (Eucalyptus pauciflora) and other hardy eucalypts at three trials in England. Scottish Forestry 67(2):30–39

    Google Scholar 

  • Lomba A, Vicente J, Moreira F, Honrado J (2011) Effects of multiple factors on plant diversity of forest fragments in intensive farmland of Northern Portugal. For Ecolog Manage 262:2219–2228. https://doi.org/10.1016/j.foreco.2011.08.014

    Article  Google Scholar 

  • Lombardero M, Fernández A (1997) Nuevos insectos perforadores asociados al eucalipto en Galicia (Coleoptera: Scolytidae y Platypodidae). Boletín Sanidad Vegetal nº 23

  • López SB, Rivera JG, Bernal MS (2018) Biodiversidad en plantaciones de eucalipto y en bosques de carballo del sur de Galicia: plantas y aves. Nova Acta Científica Compostelana 25

  • Loustau D, Berbigier P, Roumagnac P, Arruda-Pacheco C, David JS, Ferreira MI, Pereira JS, Tavares R (1996) Transpiration of a 64-year-old maritime pine stand in Portugal. 1 - Seasonal course of water flux through maritime pine. Oecologia 107:33–42

    Article  CAS  PubMed  Google Scholar 

  • Madeira MVA, Melo MG, Alexandre CA, Steen E (1989) Effects of deep plowing and superficial disk harrowing on physical and chemical soil properties and biomass in a new plantation of Eucalyptus globulus. Soil Till Res 14:163–175

    Article  Google Scholar 

  • Madeira M, Pereira JS (1990) Productivity, nutrient immobilization and soil chemical-properties in an Eucalyptus globulus plantation under different irrigation and fertilization regimes. Water Air Soil Poll 54:621–634

    CAS  Google Scholar 

  • Madeira M, Ribeiro C (1995) Influence of leaf-litter type on the chemical evolution of a soil parent material (sandstone). Biogeochemistry 29:43–58

    Article  CAS  Google Scholar 

  • Madeira MV, Fabião A, Pereira JS, Araújo MC, Ribeiro C (2002) Changes in carbon stocks in Eucalyptus globulus Labill. plantations induced by different water and nutrient availability. For Ecol Manage 171:75–85

    Article  Google Scholar 

  • Madeira M, Cortez N, Azevedo A, Magalhães MC, Ribeiro C, Fabião A (2007) As plantações de eucalipto e o solo. In: Alves AM, Pereira JS, Silva JMN (eds) O eucalipto em Portugal - impactes ambientais e investigação científica. ISA Press, Lisboa, pp 138–174

    Google Scholar 

  • MAPA (2019) Anuário de Estadística Forestal 2016. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain

    Google Scholar 

  • MAPAMA (2019) Estadística General de Incendios Forestales. Gobierno de España, Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente, Dirección General de Desarrollo Rural y Política Forestal, Área de Defensa contra Incendios Forestales. https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/Incendios_default.aspx. Accessed December 2019

  • Melun F (2018) L’eucalyptus en France; production des plantations sur 3 rotations. FCBA INFO 10:1–4

    Google Scholar 

  • Mercier L, Poisson R (1926) Un hémiptère homoptère de la famille des psyllines, parasite d’eucalyptus cultivés à Cherbourg. Bulletin Société Linnéan Normandie Series 7(9):34–37

    Google Scholar 

  • Merino A, Rodríguez López A, Brañas S, Rodríguez-Soalleiro R (2003) Nutrition and growth in newly established plantations of Eucalyptus globulus in northwestern Spain. Annals For Sci 60(6):509–517

    Article  Google Scholar 

  • Merino A, Balboa MA, Rodríguez-Soalleiro R, Álvarez-González JG (2005) Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For Ecol Manage 207(3):325–339

    Article  Google Scholar 

  • Mirra IM, Oliveira TM, Barros AMG, Fernandes PM (2017) Fuel dynamics following fire hazard reduction treatments in blue gum (Eucalyptus globulus) plantations in Portugal. For Ecol Manage 398:185–195

    Article  Google Scholar 

  • Molina A, Reigosa MJ, Carballeira A (1991) Release of allelochemical agents from litter, throughfall, and topsoil in plantations of Eucalyptus globulus Labill. in Spain. J Chem Ecol 17:147–160

    Article  CAS  PubMed  Google Scholar 

  • Molinero J, Pozo J (2004) Impact of a eucalyptus (Eucalyptus globulus Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small stream. Hydrobiologia 528:143–165

    Article  CAS  Google Scholar 

  • Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility for land cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574

    Article  Google Scholar 

  • Neilan J, Thompson D (2008) Eucalyptus as a potential biomass species for Ireland. Reproductive Material No. 15. COFORD, Dublin, Ireland

  • Neiva DM, Luís A,·Gominho J, Domingues F, Duarte AP, Pereira H, (2020) Bark residues valorization potential regarding antioxidant and antimicrobial extracts. Wood Sci Technol 54:559–585. https://doi.org/10.1007/s00226-020-01168-

    Article  CAS  Google Scholar 

  • Nereu M, Silva JS, Deus E, Nunes M, Potts B (2019) The effect of management operations on the demography of Eucalyptus globulus seedlings. For Ecol Manage 453:117630. https://doi.org/10.1016/j.foreco.2019.117630

    Article  Google Scholar 

  • Nutto L, Touza M (2006) Modelos de producción de madera sólida en plantaciones de Eucalyptus globulus de Galicia. Boletín del CIDEU 2:37–50

    Google Scholar 

  • Pérez-Cruzado C, Merino A, Rodríguez-Soalleiro R (2011) A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass Bioenerg 35:2839–2851

    Article  Google Scholar 

  • Pérez-Cruzado C, Mansilla-Salinero P, Rodríguez-Soalleiro R, Merino A (2012) Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant Soil 353:333–353

    Article  Google Scholar 

  • Pérez-Cruzado C, Mohren GMJ, Merino A, Rodríguez-Soalleiro R (2012) Carbon balance for different management practices for fast growing tree species planted on formed pastureland in southern Europe: a case study using the CO2Fix model. Eur J For Res 131:1695–1716

    Article  Google Scholar 

  • Pérez S, Renedo C, Ortiz A, Ortiz F, Tejedor C (2016) Strategies to combat Mycosphaerella leaf disease in Eucalyptus globulus plantations in northern Spain. Forests 7(9):190

    Article  Google Scholar 

  • Potts BM, Potts WC (1986) Eucalypt breeding in France. Australian Forestry 49:210–218

    Article  Google Scholar 

  • Potts BM, Vaillancourt RE, Jordan GJ, Dutkowski GW, Costa e Silva J, McKinnon GE, Steane DA, Volker PW, Lopez GA, Apiolaza LA, Li Y, Marques C, Borralho NMG, (2004) Exploration of the Eucalyptus globulus gene pool. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Eucalyptus in a changing world. RAIZ, Aveiro, Portugal, pp 46–61

    Google Scholar 

  • Potts BM, Hamilton M, Blackburn D (2011) Genetics of eucalypts: traps and opportunities. In: Walker J (ed) Developing a eucalypt resource: learning from Australia and elsewhere. University of Canterbury, New Zealand, Wood Technology Research Centre, pp 1–29

    Google Scholar 

  • Pozo J, Basaguren A, Elósegui A, Molinero J, Fabre E, Chauvet E (1998) Afforestation with Eucalyptus globulus and leaf litter decomposition in streams of Northern Spain. Hydrobiologia 373:101–109

    Article  Google Scholar 

  • Proença VM, Pereira HM, Guilherme J, Vicente L (2010) Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecologica 36:219–226. https://doi.org/10.1016/j.actao.2010.01.002

    Article  Google Scholar 

  • Purse J, Leslie A (2016) Eucalyptus ­ part 1: species with potential in the British Isles. Quarterly J Forestry 110(2):88–97

    Google Scholar 

  • Purse J, Leslie A (2016) Eucalyptus ­ part 2: findings from trial plantings, and silvicultural requirements in the British Isles. Quarterly J Forestry 110(3):161–168

    Google Scholar 

  • Queirós L, Deus E, Silva J, Vicente J, Ortiz L, Fernandes P, Castro P (2020) Assessing the drivers and the recruitment potential of Eucalyptus globulus in the Iberian Peninsula. For Ecol Manage 466:118147. https://doi.org/10.1016/j.foreco.2020.118147

    Article  Google Scholar 

  • Reis AR, Ferreira L, Tomé M, Araújo C, Branco M (2012) Efficiency of biological control of Gonipterus platensis (Coleoptera: Curculionidae) by Anaphes nitens (Hymenoptera: Mymaridae) in cold areas of the Iberian Peninsula: implications for defoliation and wood production in Eucalyptus globulus. For Ecol Manage 270:216–222

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (2011) The eucalypts. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley and Los Angeles, pp 203–209

    Google Scholar 

  • Ribeiro C, Madeira M, Araújo M (2002) Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes. For Ecol Manage 171:31–41

    Article  Google Scholar 

  • Rodríguez-Soalleiro R, Eimil-Fraga C, Gómez-García E, García-Villabrille JD, Rojo-Alboreca A, Muñoz F, Oliveira N, Sixto H (2018) Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. Forest Ecosystems 5:35

    Article  Google Scholar 

  • Rodríguez-Suárez JA, Diaz-Fierros F, Perez R, Soto B (2014) Assessing the influence of afforestation with Eucalyptus globulus on hydrological response from a small catchment in Northwestern Spain using the HBV hydrological model. Hydrol Process 28:5561–5572

    Article  Google Scholar 

  • Rodríguez-Vicente V, Marey M (2009) Land-use and land-base patterns in non-industrial private forests: Factors affecting forest management in Northern Spain. Forest Policy Econ 11:475–490

    Article  Google Scholar 

  • Ruíz F, López G, Toval G, Alejano R (2008) Selvicultura de Eucalyptus globulus Labill. In: Serrada R, Montero G, Reque JÁ (eds) Compendio de selvicultura aplicada en España. INIA, Madrid, Spain, pp 117–154

    Google Scholar 

  • Santos P, Matias H, Deus E, Águas A, Silva JS (2015) Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecol 216:1611–1621

    Article  Google Scholar 

  • Sasse J, Sands R (1997) Configuration and development of root systems of cuttings and seedlings of Eucalyptus globulus. New For 14:85–105

    Article  Google Scholar 

  • Sepliarsky F (2006) Nuevos usos industriales de la madera de Eucalyptus globulus. Boletín Informativo CIDEU 2:93–102

    Google Scholar 

  • Serralheiro F, Madeira M (1990) Changes in arthropod soil fauna due to afforestation with Eucalyptus globulus. Agrochemistry Soil Sc 39:602–606

    Google Scholar 

  • Silva JS, Moreira F, Vaz P, Catry F, Godinho-Ferreira P (2009) Assessing the relative fire proneness of different forest types in Portugal. Plant Biosystems 143:597–608

    Article  Google Scholar 

  • Silva JS, Tomé M (2016) Tasmanian blue gum in Portugal - opportunities and risks of a widely cultivated species. In: Krumm F, Vítková L (eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, Freiburg, pp 352–361

    Google Scholar 

  • Silva JS, Vaz P, Moreira F, Catry F, Rego FC (2011) Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landscape and Urban Planning 101:349–358

    Article  Google Scholar 

  • Silva-Pando FJ, Pino-Pérez R (2016) Introduction of Eucalyptus into Europe. Australian Forestry 79:283–291

    Article  Google Scholar 

  • Siscaro G (1992) Avetianella longoi sp. n. (Hymenoptera Encyrtidae) egg parasitoid of Phoracantha semipunctata F. (Coleoptera Cerambycidae). Boll Zool Agr Bachic 24:205–212

    Google Scholar 

  • Sivacioğlu A, Şen G (2017) Turkey. In non-native tree species for European forests: experiences, risks and opportunities. In: Hasenauer H, Gazda A, Konnert M, Lapin K, Mohren GMJ, Spiecker H, van Loo M, Pötzelsberger E (eds) COST Action FP1403 NNEXT, Country Reports, 3rd edn. University of Natural Resources and Life Sciences, Vienna, Austria, pp 394–413

    Google Scholar 

  • Skolmen RG, Ledig FT (1990) Bluegum eucalyptus. In: Burns RM, Honkala BH (eds) Silvics of North America: 1.conifers; 2.hardwoods. Agriculture Handbook 654, US Department Agriculture, Forest Service, Washington, vol 2

  • Soares P, Aires N, Tomé M, Araújo C, Pina JP (2004) Analysis of the two first cutting cycles of an Eucalyptus globulus spacing trial. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Eucalyptus in a changing world. RAIZ, Aveiro, Portugal, pp 283–289

    Google Scholar 

  • Soares P, Tomé M, Pereira JS (2007) A produtividade do eucaliptal. In: Alves AM, Pereira JS, Silva JMN (eds) O eucalipto em Portugal - impactes ambientais e investigação científica. ISA Press, Lisboa, pp 27–59

    Google Scholar 

  • Soria F, Borralho NMG (1997) The genetics of resistance to Phoracantha semipunctata attack in Eucalyptus globulus in Spain. Silvae Genetica 46:365–369

    Google Scholar 

  • Sousa J, da Gama M, Ferreira C, Barrocas H (2000) Effect of eucalyptus plantations on Collembola communities in Portugal: a review. Belg J Entomol 2(1):187–201

    Google Scholar 

  • Souto XC, Bolaño JC, González L, Reigosa MJ (2001) Allelopathic effects of tree species on some soil microbial populations and herbaceous plants. Biol Plant 4:269–275. https://doi.org/10.1023/a:1010259627812

    Article  Google Scholar 

  • Stanturf JA, Vance ED, Fox TR, Kirst M (2013) Eucalyptus beyond its native range: environmental issues in exotic bioenergy plantations. Int J For Res Article ID 463030

  • Tomé M, Tomé JA, Araújo MC, Pereira JS (1994) Intraspecific competition in irrigated and fertilized eucalypt plantations. For Ecol Manage 69:211–218

    Article  Google Scholar 

  • Tomé M, Oliveira T, Soares P (2006) O modelo Globulus 3.0. GIMREF-RC2/2006 Depart Eng Flor, Instituto Superior Agronomia, Lisboa, Portugal

  • Toro MA, Silio L, Rodriguez MC, Soria F, Toval G (1998) Genetic analysis of survival to drought in Eucalyptus globulus in Spain. 6th World Congress of Genetics Applied to Livestock Production, 6WCGALP, vol 27. Armidale, Australia, pp 499–502

    Google Scholar 

  • Valente C, Hodkinson I (2009) First record of the red gum lerp psyllid, Glycaspis brimblecombei Moore (Hem.: Psyllidae) in Europe. J Applied Entomology 133(4):315–317

  • Valente C, Afonso C, Gonçalves CI, Alonso-Zarazaga MA, Reis A, Branco M (2017) Environmental risk assessment of the egg parasitoid Anaphes inexpectatus for classical biological control of the Eucalyptus snout beetle Gonipterus platensis. Biocontrol 62(4):457–468

    Article  Google Scholar 

  • Valente C, Gonçalves CI, Reis A, Branco M (2017) Pre-selection and biological potential of the egg parasitoid Anaphes inexpectatus for the control of the Eucalyptus snout beetle, Gonipterus platensis. J Pest Sci 90(3):911–923

    Article  Google Scholar 

  • Valente C, Gonçalves CI, Monteiro F, Gaspar J, Silva M, Sottomayor M, Branco M (2018) Economic outcome of classical biological control: a case study on the eucalyptus snout beetle, Gonipterus platensis, and the parasitoid Anaphes nitens. Ecol Econ 149:40–47

    Article  Google Scholar 

  • Valente F, David JS, Gash JHC (1997) Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. J Hydrology 190(1–2):141–162

    Article  Google Scholar 

  • Varela ME, Benito E, de Blas E (2005) Impact of wildfires on surface water repellency in soils of northwest Spain. Hydrol Process 19:3649–3657

    Article  CAS  Google Scholar 

  • Vaz AS, Honrado JP, Lomba A (2019) Replacement of pine by eucalypt plantations: effects on the diversity and structure of tree assemblages under land abandonment and implications for landscape management. Landscape Urban Plann 185:61–67. https://doi.org/10.1016/j.landurbplan.2019.01.009

    Article  Google Scholar 

  • Vega G, Toval G, Basurco F, Rodriguez R (1994) Early growth of 260 families of Eucalyptus globulus in North Spain. In: Pereira JS, Pereira H (eds) Eucalyptus for biomass production. Commission of the European Communities, pp 115–132

  • Vega JA (1985) Empleo del fuego prescrito en eucaliptales de Galicia. In: Ministerio de Agricultura, Pesca y Alimentación (ed) Estudios sobre prevención y efectos ecológicos de los incendios forestales. ICONA, MAPA, pp 37–49

  • Viera M, Ruíz-Fernández F, Rodríguez-Soalleiro R (2016) Nutritional prescriptions for Eucalyptus plantations: lessons learned from Spain. Forests 7:84

    Article  Google Scholar 

  • Warren CR, Aranda I, Cano FJ (2011) Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. Plant, Cell Environ 34:1609–1629

    Article  CAS  Google Scholar 

  • Zanuncio J, do Nascimento EC, Garcia JF, Zanuncio TV, (1994) Major lepidopterous defoliators of eucalypt in southeast Brazil. For Ecol Manage 65:53–63

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the activities of the IUFRO task force "Planted forests for a greener future.

Funding

Margarida Tomé, Maria Helena Almeida, Susana Barreiro, Manuela R. Branco and Paula Soares are members of the Centro de Estudos Florestais (CEF), a research unit funded by FCT – Fundação para a Ciência e Tecnologia (UIDB/00239/2020). Ernesto Deus was supported by a doctoral grant from the Portuguese Foundation for Science and Technology (FCT; PB/BD/113936/2015). Glória Pinto is member of Centro de Estudos do Ambiente e do Mar (CESAM), a research unit funded by FCT – Fundação para a Ciência e Tecnologia (UIDP/50017/2020 + UIDB/50017/2020). Joaquim S. Silva is member of Center for Functional Ecology (CFE), a research unit funded by FCT – Fundação para a Ciência e Tecnologia (UIDB/04004/2020). Roque Rodríguez-Soalleiro is member of the GI-1837 research group, funded by the Galician Autonomous Government, cofounded by ERDF (code ED431C 2018/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Tomé.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Communicated by Andrés Bravo-Oviedo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomé, M., Almeida, M.H., Barreiro, S. et al. Opportunities and challenges of Eucalyptus plantations in Europe: the Iberian Peninsula experience. Eur J Forest Res 140, 489–510 (2021). https://doi.org/10.1007/s10342-021-01358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-021-01358-z

Keywords

Navigation