Skip to main content
Log in

The Time Optimal Control of Two Dimensional Convective Brinkman–Forchheimer Equations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this work, we discuss the time optimal control of two dimensional convective Brinkman–Forchheimer (2D CBF) equations, which describe the motion of incompressible viscous fluid through a rigid, homogeneous, isotropic, porous medium. We establish Pontryagin’s maximum principle for the time optimal control of the 2D CBF equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since \({\mathbf {u}}\in \mathrm {C}([0,T];{\mathbb {V}})\cap \mathrm {L}^2(0,T;\mathrm {D}(\mathrm {A}))\) is the unique strong solution of the system (3.1) with the control \(\mathrm {U}\in \mathrm {L}^{\infty }(0,\infty ;{\mathbb {H}})\), we suppress the dependence of \({\mathbf {u}}(\cdot )\) in (4.2).

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theoret. Comput. Fluid Dyn. 1, 303–325 (1990)

    Article  MATH  Google Scholar 

  2. Anh, C.T., Nguyet, T.M.: Time optimal control of the unsteady 3D Navier-Stokes-Voigt equations. Appl. Math. Optim. 79(2), 397–426 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antontsev, S.N., de Oliveira, H.B.: The Navier-Stokes problem modified by an absorption term. Appl. Anal. 89(12), 1805–1825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Springer, New York (1976)

    Book  MATH  Google Scholar 

  5. Barbu, V.: The time optimal control problem for parabolic variational inequalities. Appl. Math. Optim. 11, 1–22 (1984)

    Article  MathSciNet  Google Scholar 

  6. Barbu, V.: The time optimal problem for a class of nonlinear distributed systems. In: Lasiecka, I., Triggiani, R. (eds.) Control Problems Described by Partial Differential Equations. Lecture Notes in Control and Information Science, vol. 97, pp. 16–39. Springer, Berlin (1987)

    Google Scholar 

  7. Barbu, V.: Optimal Control of Variational Inequalities, Pitman Res. Notes Math. Ser. 100, Pitman, Boston, (1984)

  8. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, vol. 190. Academic Press Inc., Boston, MA (1993)

    Google Scholar 

  9. Barbu, V.: Optimal control of Navier-Stokes equations with periodic inputs. Nonlinear Anal. Theory Methods Appl. 31(1–2), 15–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbu, V.: The time optimal control of Navier-Stokes equations. Syst. Control Lett. 30, 93–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbu, V., Sritharan, S.S.: \(H^{\infty }\)-control theory of fluid dynamics. Proc. R. Soc. Lond. A 454, 3009–3033 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barbu, V., Sritharan, S.S.: Flow invariance preserving feedback controllers for the Navier-Stokes equation. J. Math. Anal. Appl. 255, 281–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, In: Contributions to non linear functional analysis, (ed.), Academic Press, 101–156 (1971)

  14. Brezis, H.: Operateurs Maximaux et Semi-groupes de Contractions das les Espaces de Hilbert. North-Holland, New York (1973)

    MATH  Google Scholar 

  15. Casas, E., Tr\(\ddot{I}\)tzsch, F.: Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13(2), 406–431 (2002)

  16. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM Philadelphia, Philadelphia (2013)

    MATH  Google Scholar 

  17. Chen, M.: Bang-bang property for time optimal control of the Korteweg-de Vries-Burgers equation. Appl. Math. Optim. 76(2), 399–414 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fattorini, H.O.: Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems, North-Holland Mathematics Studies 201. Elsevier, Amsterdam (2005)

    Google Scholar 

  19. Fattorini, H.O.: A unified theory of necessary conditions for nonlinear nonconvex control systems. Appl. Math. Optim. 15, 141–185 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fattorini, H.O., Sritharan, S.S.: Existence of optimal controls for viscous flow problems. Proc. R. Soc. Lond. A 439, 81–102 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fattorini, H.O., Sritharan, S.S.: Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. R. Soc. Edinb. A 124, 211–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fattorini, H.O., Sritharan, S.S.: Optimal chattering controls for viscous flow. Nonlinear Anal. Theory Methods Appl. 25, 763–797 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fefferman, C.L., Hajduk, K.W., Robinson, J.C.: Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, arXiv:1904.03337

  24. Fujiwara, D., Morimoto, H.: An \(L^r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  25. Fursikov, A.V.: On some control problems and results related to the unique solution of mixed problems by the three-dimensional Navier-Stokes and Euler equations. Dokl. Akad. Nauk SSSR 252, 1066–1070 (1980)

    MathSciNet  Google Scholar 

  26. Fursikov, A.V.: Properties of solutions of certain extremum problems related to the Navier-Stokes and Euler equations. Math. Sbornik 117, 323–349 (1981)

    Google Scholar 

  27. Fursikov, A.V.: Optimal Control of Distributed Systems: Theory and Applications. American Mathematical Society, Rhode Island (2000)

    MATH  Google Scholar 

  28. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. SIAM’s Advances in Design and Control series, Philadelphia (2003)

    MATH  Google Scholar 

  29. Hajduk, K.W., Robinson, J.C.: Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J. Differ. Equ. 263, 7141–7161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kalantarov, V.K., Zelik, S.: Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11, 2037–2054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kunisch, K., Wang, L.: Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete Contin. Dyn. Syst. 36(1), 279–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunisch, K., Wang, L.: The bang-bang property of time optimal controls for the Burgers equation. Discrete Contin. Dyn. Syst. 34(9), 3611–3637 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kunisch, K., Wang, L.J.: Time optimal control of the heat equation with pointwise control constraints, ESAIM: Control Optim. Calc. Var. 19, 460–485 (2013)

    MATH  Google Scholar 

  34. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  35. Li, S., Wang, G.: The time optimal control of the Boussinesq equations. Numer Funct Anal Optim 24(1–2), 163–180 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  MATH  Google Scholar 

  37. Marinoschi, G.: Minimal time sliding mode control for evolution equations in Hilbert spaces. ESAIM Control Optim. Calc. Var. 26(46), 45 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Markowich, P.A., Titi, E.S., Trabelsi, S.: Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity 29(4), 1292–1328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Micu, S., Roventa, I., Tucsnak, M.: Time optimal boundary controls for the heat equation. J. Funct. Anal. 263(1), 25–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Micu, S., Temereanca, L.E.: A time-optimal boundary controllability problem for the heat equation in a ball. Proc. Roy. Soc. Edinburgh Sect. A 144(6), 1171–1189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mohan, M.T.: On the convective Brinkman-Forchheimer equations, Submitted

  42. Mohan, M.T.: Optimal control problems governed by the two dimensional convective Brinkman-Forchheimer equations, Submitted, arxiv:2101.11293

  43. Mohan, M.T.: Asymptotic analysis of the 2D convective Brinkman-Forchheimer equations in unbounded domains: Global attractors and upper semicontinuity, Submitted, arXiv:2010.12814.pdf

  44. Raymond, J.P.: Optimal control of partial differential equations. Université Paul Sabatier, Lecture Notes (2013)

  45. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The three-dimensional Navier–Stokes equations, classical theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, (2016)

  46. Sritharan, S.S.: Dynamic programming of the Navier-Stokes equations. Syst. Cont. Lett. 16, 299–301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sritharan, S.S.: An optimal control problem in exterior hydrodynamics. Proc. R. Soc. Edinb. A 121, 5–33 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sritharan, S.S.: Optimal control of viscous flow, SIAM Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1998)

  49. Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983)

    MATH  Google Scholar 

  50. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam (1984)

  51. Tröltzsch, F., Wachsmuth, D.: Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations. ESAIM Control Optim. Calc. Var. 12(1), 93–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tröltzsch, F., Wachsmuth, D.: Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations, ESAIM: Control. Optim. Calc. Var. 12(1), 93–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, G.: Optimal controls of 3 dimensional Navier-Stokes equations with state constraints. SIAM J. Control Optim. 41(2), 583–606 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, G., Wang, L., Xu, Y., Zhang, Y.: Time Optimal Control of Evolution Equations. Springer, New York (2018)

    Book  MATH  Google Scholar 

  55. Wang, G.S.: \(L^{\infty }\)-null controllability for the heat equation and its consequences for the time optimal control problem. SIAM J. Control Optim. 47, 1701–1720 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, L., Wang, G.: The optimal time control of a phase-field system. SIAM J. Control Optim. 42(4), 1483–1508 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhao, C., You, Y.: Approximation of the incompressible convective Brinkman-Forchheimer equations. J. Evol. Equ. 12, 767–788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. T. Mohan would like to thank the Department of Science and Technology (DST), India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110) and Indian Institute of Technology Roorkee, for providing stimulating scientific environment and resources. The author sincerely would like to thank the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil T. Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Global Solvability of the Linearized System

Appendix A. Global Solvability of the Linearized System

In this section, we discuss the existence of a global strong solution to the linearized system (4.26). Let \({\mathbf {u}}(\cdot )\) be the unique strong solution to the system (A.3) with the control \(\mathrm {U}\) satisfying \({\mathbf {u}}\in \mathrm {C}([0,T];{\mathbb {V}})\cap \mathrm {L}^2(0,T;\mathrm {D}(\mathrm {A}))\). Then, we have the following result.

Theorem A.1

For \(\mathrm {U}\in \mathrm {L}^2(0,T;{\mathbb {H}})\), there exists a unique strong solution to the system

$$\begin{aligned} \left\{ \begin{aligned}&\partial _t{\mathbf {z}}(t)+\mu \mathrm {A}{\mathbf {z}}(t)+\mathrm {B}'({\mathbf {u}}(t)){\mathbf {z}}(t)+\alpha {\mathbf {z}}(t)+\beta {\mathcal {C}}'({\mathbf {u}}(t)){\mathbf {z}}(t)=\mathrm {U}(t),\ \text { in }\ {\mathbb {H}},\\&\quad {\mathbf {z}}(0)={\mathbf {0}}, \end{aligned} \right. \end{aligned}$$
(A.1)

for a.e. \(t\in (0,T)\), satisfying

$$\begin{aligned} {\mathbf {z}}\in \mathrm {C}([0,T];{\mathbb {V}})\cap \mathrm {L}^2(0,T;\mathrm {D}(\mathrm {A})). \end{aligned}$$

Proof

Using the standard Faedo-Galerkin technique, one can obtain the global solvability results. We only provide a-priori energy estimates satisfied by the system (A.1) and one can use Faedo-Galerkin approximation to make the calculations rigorous. Taking the inner product with \({\mathbf {z}}(\cdot )\) to the first equation in (A.1), we obtain

$$\begin{aligned}&\frac{1}{2}\frac{\mathrm {d}}{\mathrm {d}t}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2+\mu \Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2+\alpha \Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2\nonumber \\&\qquad +\beta \Vert |{\mathbf {u}}(t)|^{\frac{r-1}{2}}{\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2\mathrm {d}t+(r-1)\beta \Vert |{\mathbf {u}}(t)|^{r-3}({\mathbf {u}}(t)\cdot {\mathbf {z}}(t))\Vert _{{\mathbb {H}}}^2\nonumber \\&\quad =-(\mathrm {B}({\mathbf {z}}(t),{\mathbf {u}}(t)),{\mathbf {z}}(t))+(\mathrm {U}(t),{\mathbf {z}}(t))\le \sqrt{2}\Vert {\mathbf {u}}(t)\Vert _{{\mathbb {V}}}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}\nonumber \\&\qquad +\frac{1}{\sqrt{\lambda _1}}\Vert \mathrm {U}(t)\Vert _{{\mathbb {H}}}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}\nonumber \\&\quad \le \frac{\mu }{2}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2+\frac{2}{\mu }\Vert {\mathbf {u}}(t)\Vert _{{\mathbb {V}}}^2\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2+\frac{1}{\mu \lambda _1}\Vert \mathrm {U}(t)\Vert _{{\mathbb {H}}}^2. \end{aligned}$$
(A.2)

Integrating the above inequality from 0 to t, we find

$$\begin{aligned}&\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2+\mu \int _0^t\Vert {\mathbf {z}}(s)\Vert _{{\mathbb {V}}}^2\mathrm {d}s+2\alpha \int _0^t\Vert {\mathbf {z}}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s+2\beta \int _0^t\Vert |{\mathbf {u}}(s)|^{\frac{r-1}{2}}{\mathbf {z}}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s\nonumber \\&\qquad +2(r-1)\beta \int _0^t\Vert |{\mathbf {u}}(s)|^{r-3}({\mathbf {u}}(s)\cdot {\mathbf {z}}(s))\Vert _{{\mathbb {H}}}^2\mathrm {d}s\nonumber \\&\quad \le \Vert {\mathbf {z}}_0\Vert _{{\mathbb {H}}}^2+\frac{4}{\mu }\int _0^t\Vert {\mathbf {u}}(s)\Vert _{{\mathbb {V}}}^2\Vert {\mathbf {z}}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s+\frac{2}{\mu \lambda _1}\int _0^t\Vert \mathrm {U}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s, \end{aligned}$$
(A.3)

for all \(t\in (0,T)\). An application of Gornwall’s inequality in (A.3) yields

$$\begin{aligned}&\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2\le \left\{ \Vert {\mathbf {z}}_0\Vert _{{\mathbb {H}}}^2+\frac{2}{\mu \lambda _1}\int _0^T\Vert \mathrm {U}(t)\Vert _{{\mathbb {H}}}^2\mathrm {d}t\right\} \exp \left( \frac{4}{\mu }\int _0^T\Vert {\mathbf {u}}(t)\Vert _{{\mathbb {V}}}^2\mathrm {d}t\right) , \end{aligned}$$
(A.4)

for all \(t\in (0,T)\). Using (A.4) in (A.3), we get

$$\begin{aligned}&\sup _{t\in [0,T]}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2+\mu \int _0^T\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2\mathrm {d}t\nonumber \\&\quad \le \left\{ \Vert {\mathbf {z}}_0\Vert _{{\mathbb {H}}}^2+\frac{2}{\mu }\int _0^T\Vert \mathrm {U}(t)\Vert _{{\mathbb {H}}}^2\mathrm {d}t\right\} \exp \left( \frac{8}{\mu }\int _0^T\Vert {\mathbf {u}}(t)\Vert _{{\mathbb {V}}}^2\mathrm {d}t\right) . \end{aligned}$$
(A.5)

Taking inner product with \(\mathrm {A}{\mathbf {z}}(\cdot )\) to the first equation in (A.1), we obtain

$$\begin{aligned}&\frac{1}{2}\frac{\mathrm {d}}{\mathrm {d}t}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2+\mu \Vert \mathrm {A}{\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2+\alpha \Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2\nonumber \\&\quad =-(\mathrm {B}({\mathbf {u}}(t),{\mathbf {z}}(t)),\mathrm {A}{\mathbf {z}}(t))-(\mathrm {B}({\mathbf {z}}(t),{\mathbf {u}}(t)),\mathrm {A}{\mathbf {z}}(t))\nonumber \\&\qquad -\beta ({\mathcal {C}}'({\mathbf {u}}(t)){\mathbf {z}}(t),\mathrm {A}{\mathbf {z}}(t))+(\mathrm {U}(t),\mathrm {A}{\mathbf {z}}(t)). \end{aligned}$$
(A.6)

For \(r=2\), we estimate terms on the right hand side of the equality (A.6) using Hölder’s, Ladyzhenskaya’s, Agmon’s and Young’s inequalities as

$$\begin{aligned} |(\mathrm {B}({\mathbf {u}},{\mathbf {z}}),\mathrm {A}{\mathbf {z}})|&\le \Vert {\mathbf {u}}\Vert _{{\widetilde{{\mathbb {L}}}}^{\infty }}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}\le \frac{\mu }{8}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{C}{\mu }\Vert {\mathbf {u}}\Vert _{{\mathbb {H}}}\Vert \mathrm {A}{\mathbf {u}}\Vert _{{\mathbb {H}}}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}^2, \end{aligned}$$
(A.7)
$$\begin{aligned} |(\mathrm {B}({\mathbf {z}},{\mathbf {u}}),\mathrm {A}{\mathbf {z}})|&\le \Vert {\mathbf {z}}\Vert _{{\widetilde{{\mathbb {L}}}}^{\infty }}\Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}\le C\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}^{1/2}\Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^{3/2}\nonumber \\&\le \frac{\mu }{8}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{C}{\mu ^3}\Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}^4\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}^2, \end{aligned}$$
(A.8)
$$\begin{aligned} \beta |({\mathcal {C}}'({\mathbf {u}}){\mathbf {z}},\mathrm {A}{\mathbf {z}})|&\le 2\beta \Vert {\mathbf {u}}\Vert _{{\widetilde{{\mathbb {L}}}}^4}\Vert {\mathbf {z}}\Vert _{{\widetilde{{\mathbb {L}}}}^4}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}\le 2\sqrt{2}\beta \Vert {\mathbf {u}}\Vert _{{\widetilde{{\mathbb {L}}}}^4}\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}^{1/2}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}^{1/2}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}\nonumber \\&\le \frac{\mu }{8}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{16\beta ^2}{\mu }\Vert {\mathbf {u}}\Vert _{{\widetilde{{\mathbb {L}}}}^4}^2\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}\nonumber \\&\le \frac{\mu }{8}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{32\beta ^2}{\mu }\Vert {\mathbf {u}}\Vert _{{\widetilde{{\mathbb {L}}}}^4}^4\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}^2+\frac{32\beta ^2}{\mu }\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}^2, \end{aligned}$$
(A.9)
$$\begin{aligned} |(\mathrm {U},\mathrm {A}{\mathbf {z}})|&\le \Vert \mathrm {U}\Vert _{{\mathbb {H}}}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}\le \frac{\mu }{8}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{2}{\mu }\Vert \mathrm {U}\Vert _{{\mathbb {H}}}^2. \end{aligned}$$
(A.10)

Combining (A.7)-(A.10), substituting it in (A.6) and then integrating from 0 to t, we find

$$\begin{aligned}&\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2+\mu \int _0^t\Vert \mathrm {A}{\mathbf {z}}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s+2\alpha \int _0^t\Vert {\mathbf {z}}(s)\Vert _{{\mathbb {V}}}^2\mathrm {d}s\nonumber \\&\quad \le \frac{4}{\mu }\int _0^t\Vert \mathrm {U}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s+\frac{64\beta ^2}{\mu }\int _0^t\Vert {\mathbf {z}}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s\nonumber \\&\qquad + \int _0^t\left[ \frac{C}{\mu }\left( \Vert {\mathbf {u}}(s)\Vert _{{\mathbb {H}}}^2+\Vert \mathrm {A}{\mathbf {u}}(s)\Vert _{{\mathbb {H}}}^2\right) +\frac{64\beta ^2}{\mu }\Vert {\mathbf {u}}(s)\Vert _{{\widetilde{{\mathbb {L}}}}^4}^4\right] \Vert {\mathbf {z}}(s)\Vert _{{\mathbb {V}}}^2\mathrm {d}s. \end{aligned}$$
(A.11)

Applying Gronwall’s inequality in (A.11), we get

$$\begin{aligned}&\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2+\mu \int _0^t\Vert \mathrm {A}{\mathbf {z}}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s+2\alpha \int _0^t\Vert {\mathbf {z}}(s)\Vert _{{\mathbb {V}}}^2\mathrm {d}s\nonumber \\&\quad \le \left\{ \frac{4}{\mu }\int _0^T\Vert \mathrm {U}(t)\Vert _{{\mathbb {H}}}^2\mathrm {d}t+\frac{64\beta ^2}{\mu }\int _0^T\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2\mathrm {d}t\right\} \nonumber \\&\qquad \times \exp \left\{ \frac{C}{\mu }\int _0^T\left[ \Vert {\mathbf {u}}(t)\Vert _{{\mathbb {H}}}^2+\Vert \mathrm {A}{\mathbf {u}}(t)\Vert _{{\mathbb {H}}}^2+\beta ^2\Vert {\mathbf {u}}(t)\Vert _{{\widetilde{{\mathbb {L}}}}^4}^4\right] \mathrm {d}t\right\} , \end{aligned}$$
(A.12)

for all \(t\in [0,T]\). For \(r=3\), we need to estimate \(\beta |({\mathcal {C}}'({\mathbf {u}}){\mathbf {z}},\mathrm {A}{\mathbf {z}})|\) only. Using Hölder’s, Ladyzhenskaya’s, Agmon’s and Young’s inequalities, we estimate it as

$$\begin{aligned} \beta ({\mathcal {C}}'({\mathbf {u}}){\mathbf {z}},\mathrm {A}{\mathbf {z}})&\le 3\beta \Vert {\mathbf {u}}\Vert _{{\widetilde{{\mathbb {L}}}}^8}^2\Vert {\mathbf {z}}\Vert _{{\widetilde{{\mathbb {L}}}}^4}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}\le C\beta \Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}^2\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}^{1/2}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}^{1/2}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}\nonumber \\&\le \frac{\mu }{8}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{C\beta ^2}{\mu }\Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}^4\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}\nonumber \\&\le \frac{\mu }{8}\Vert \mathrm {A}{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{C\beta ^2}{\mu }\left( \Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}^8\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}^2+\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}^2\right) . \end{aligned}$$
(A.13)

In order to obtain time derivative estimates, we take the inner product with \(\partial _t{\mathbf {u}}(\cdot )\) with the first equation in (A.1) to find

$$\begin{aligned}&\Vert \partial _t{\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2+\frac{\mu }{2}\frac{\mathrm {d}}{\mathrm {d}t}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {V}}}^2+\frac{\alpha }{2}\frac{\mathrm {d}}{\mathrm {d}t}\Vert {\mathbf {z}}(t)\Vert _{{\mathbb {H}}}^2\nonumber \\&\quad = -(\mathrm {B}({\mathbf {u}}(t),{\mathbf {z}}(t)),\partial _t{\mathbf {z}}(t))-(\mathrm {B}({\mathbf {z}}(t),{\mathbf {u}}(t)),\partial _t{\mathbf {z}}(t))\nonumber \\&\qquad -\beta ({\mathcal {C}}'({\mathbf {u}}(t)){\mathbf {z}}(t),\partial _t{\mathbf {u}}(t))+(\mathrm {U}(t),\partial _t{\mathbf {z}}(t)). \end{aligned}$$
(A.14)

We estimate \(|(\mathrm {B}({\mathbf {z}},{\mathbf {u}}),\partial _t{\mathbf {z}})|\) using (2.11) and Young inequality as

$$\begin{aligned} |(\mathrm {B}({\mathbf {z}},{\mathbf {u}}),\partial _t{\mathbf {z}})|&\le C\Vert {\mathbf {z}}\Vert _{{\mathbb {H}}}^{1/2}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}^{1/2}\Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}^{1/2}\Vert \mathrm {A}{\mathbf {u}}\Vert _{{\mathbb {H}}}^{1/2}\Vert \partial _t{\mathbf {z}}\Vert _{{\mathbb {H}}}\nonumber \\&\le \frac{\mu }{8}\Vert \partial _t{\mathbf {z}}\Vert _{{\mathbb {H}}}^2+\frac{C}{\mu \sqrt{\lambda _1}}\Vert {\mathbf {u}}\Vert _{{\mathbb {V}}}\Vert \mathrm {A}{\mathbf {u}}\Vert _{{\mathbb {H}}}\Vert {\mathbf {z}}\Vert _{{\mathbb {V}}}^2. \end{aligned}$$
(A.15)

One can use the calculations similar to (A.7)-(A.10) and (A.13) to obtain \( \int _0^t\Vert \partial _t {\mathbf {u}}(s)\Vert _{{\mathbb {H}}}^2\mathrm {d}s\le C, \) for all \(t\in [0,T]\) and hence one can complete the Theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M.T. The Time Optimal Control of Two Dimensional Convective Brinkman–Forchheimer Equations. Appl Math Optim 84, 3295–3338 (2021). https://doi.org/10.1007/s00245-021-09748-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09748-w

Keywords

Mathematics Subject Classification

Navigation