Skip to main content
Log in

Travelling on Graphs with Small Highway Dimension

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter roughly measures how many central nodes are visited by all shortest paths of a certain length. It has been shown that transportation networks, on which TSP and STP naturally occur for various applications in logistics, typically have a small highway dimension. While it was previously shown that these problems admit a quasi-polynomial time approximation scheme on graphs of constant highway dimension, we demonstrate that a significant improvement is possible in the special case when the highway dimension is 1. Specifically, we present a fully-polynomial time approximation scheme (FPTAS). We also prove that both TSP and STP are weakly \({\mathsf {NP}}\)-hard for these restricted graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. A metric is said to have doubling dimension d if for all \(r>0\) every ball of radius r can be covered by at most \(2^d\) balls of half the radius r/2.

  2. It is often assumed that all shortest paths are unique when defining the highway dimension, since this allows good polynomial approximations of this graph parameter [1]. In this work however, we do not rely on these approximations, and thus do not require uniqueness of shortest paths.

  3. See [26, Section 9] and [14] for detailed discussions on different definitions of the highway dimension.

References

  1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension and shortest path algorithms. In: Proceedings of 28th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 690–699 (2011). https://doi.org/10.1007/978-3-642-22006-7_58

  2. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension and provably efficient shortest path algorithms. J. ACM (2016). https://doi.org/10.1145/2985473

    Article  MathSciNet  MATH  Google Scholar 

  3. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of 21st Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 782–793 (2010). https://doi.org/10.1137/1.9781611973075.64

  4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998). https://doi.org/10.1145/290179.290180

    Article  MathSciNet  MATH  Google Scholar 

  5. Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proceedings of 9th Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 33–41 (1998)

  6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: Proceedings of 33rd Annual IEEE Symposium on Foundations Computer Science (FOCS), pp. 14–23 (1992). https://doi.org/10.1145/278298.278306

  7. Bartal, Y., Gottlieb, L.A., Krauthgamer, R.: The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme. In: Proceedings of 44th Annual ACM Symposium on Theory Computing (STOC), pp. 663–672 (2012). https://doi.org/10.1145/2213977.2214038

  8. Bast, H., Funke, S., Matijevic, D.: Ultrafast shortest-path queries via transit nodes. In: The Shortest Path Problem: Ninth DIMACS Implementation Challenge 74, 175–192 (2009)

  9. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proceedings of 9th Workshop Algorithm Engineering and Experiments (ALENEX) (2007). https://doi.org/10.1137/1.9781611972870.5

  10. Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for Steiner forest on planar graphs and graphs of bounded treewidth. J. ACM 58, 21:1–21:37 (2011). https://doi.org/10.1145/2027216.2027219

    Article  MathSciNet  MATH  Google Scholar 

  11. Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for \(k\)-center, \(k\)-median, and capacitated vehicle routing in bounded highway dimension. In: Proceedings of 26th European Symposium Algorithms (ESA), pp. 8:1–8:15 (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.8

  12. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32, 171–176 (1989). https://doi.org/10.1016/0020-0190(89)90039-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Bland, R., Shallcross, D.: Large traveling salesman problems arising from experiments in X-ray crystallography: a preliminary report on computation. Oper. Res. Lett. 8, 125–128 (1989). https://doi.org/10.1016/0167-6377(89)90037-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Blum, J.: Hierarchy of transportation network parameters and hardness results (2019). arXiv:1905.11166

  15. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Borndörfer, R., Neumann, M., Pfetsch, M.E.: The line connectivity problem. In: Fleischmann, B., Borgwardt, K.H., Klein, R., Tuma, A.: (eds.) Operations Research Proceedings, pp. 557–562 (2009). https://doi.org/10.1007/978-3-642-00142-0_90

  17. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation scheme for Steiner tree in planar graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1285–1294 (2007). https://doi.org/10.1145/1541885.1541892

  18. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for Steiner tree. In: Proceedings of the 42nd Annual ACM Symposium on Theory Computing (STOC), pp. 583–592 (2010). https://doi.org/10.1145/1806689.1806769

  19. Chen, C.Y., Grauman, K.: Efficient activity detection in untrimmed video with max-subgraph search. IEEE Trans. Pattern Anal. Mach. Intell. 39, 908–921 (2018). https://doi.org/10.1109/TPAMI.2016.2564404

    Article  Google Scholar 

  20. Chlebík, M., Chlebíková, J.: The Steiner tree problem on graphs: Inapproximability results. Theor. Comput. Sci. 406, 207–214 (2008). https://doi.org/10.1016/j.tcs.2008.06.046

    Article  MathSciNet  MATH  Google Scholar 

  21. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29, i189–i198 (2013). https://doi.org/10.1093/bioinformatics/btt205

    Article  Google Scholar 

  22. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon University (1976). http://www.dtic.mil/dtic/tr/fulltext/u2/a025602.pdf

  23. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 5th edn. Springer, Berlin (2017)

    Book  Google Scholar 

  24. Disser, Y., Feldmann, A.E., Klimm, M., Könemann, J.: Travelling on graphs with small highway dimension. In: Proceedings of the 45th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2019, pp. 175–189 (2019)

  25. Feldmann, A.E.: Fixed parameter approximations for \(k\)-center problems in low highway dimension graphs. Algorithmica 81, 1031–1052 (2019). https://doi.org/10.1007/s00453-018-0455-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Feldmann, A.E., Fung, W.S., Könemann, J., Post, I.: A \((1+\varepsilon )\)-embedding of low highway dimension graphs into bounded treewidth graphs. SIAM J. Comput. 41, 1667–1704 (2018). https://doi.org/10.1137/16M1067196

    Article  MathSciNet  MATH  Google Scholar 

  27. Feldmann, A.E., Marx, D.: The parameterized hardness of the \(k\)-center problem in transportation networks. In: Proceedings of 16th Scandinavian Symposium and Workshop Algorithm Theory (SWAT), pp. 19:1–19:13 (2018). https://doi.org/10.4230/LIPIcs.SWAT.2018.19

  28. Feldmann, A.E., Saulpic, D.: Polynomial time approximation schemes for clustering in low highway dimension graphs. In: Proceedings of the 28th European Symposium on Algorithms (ESA), vol. 173, pp. 46:1–46:22 (2020). arXiv:2006.12897

  29. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math 32, 835–859 (1977). https://doi.org/10.1137/0132072

    Article  MathSciNet  MATH  Google Scholar 

  30. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977). https://doi.org/10.1137/0132071

    Article  MathSciNet  MATH  Google Scholar 

  31. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman vol. 29, (2002)

  32. Grigni, M., E. Koutsoupias, Papadimitriou, C.H.: An approximation scheme for planar graph TSP. In: Proceedings of 36th Annual IEEE Symposium on Foundations Computer Science (FOCS), pp. 640–645 (1995). https://doi.org/10.1109/SFCS.1995.492665

  33. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991). https://doi.org/10.1007/BF01586932

    Article  MathSciNet  MATH  Google Scholar 

  34. Held, S., Korte, B., Rautenbach, D., Vygen, J.: Combinatorial optimization in VLSI design. In: Chvatal, V. (ed.) Combinatorial Optimization: Methods and Applications, pp. 33–96. IOS Press, Amsterdam (2011)

    MATH  Google Scholar 

  35. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986). https://doi.org/10.1145/5925.5933

    Article  MathSciNet  Google Scholar 

  36. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: Proceedings of 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 448–453 (1999)

  37. Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algorithm for metric TSP. arXiv:2007.01409 (2020)

  38. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations pp. 85–103 (1972)

  39. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. J. Comput. Syst. Sci. 81, 1665–1677 (2015). https://doi.org/10.1016/j.jcss.2015.06.003

    Article  MathSciNet  MATH  Google Scholar 

  40. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds, and approximation for \((k, r)\)-center. In: Proceedings of 28th International Symposium on Algorithms Computing (ISAAC), pp. 50:1–50:13 (2017). https://doi.org/10.4230/LIPIcs.ISAAC.2017.50

  41. Klein, P.: A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008). https://doi.org/10.1137/060649562

    Article  MathSciNet  MATH  Google Scholar 

  42. Kosowski, A., Viennot, L.: Beyond highway dimension: small distance labels using tree skeletons. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1462–1478 (2017)

  43. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: Proceedings of 47th Annual IEEE Symposium on Foundations Computing Science (FOCS), pp. 119–132 (2006). https://doi.org/10.1109/FOCS.2006.9

  44. Lampis, M.: Improved inapproximability for TSP. Theory Comput. 10, 217–236 (2014). https://doi.org/10.4086/toc.2014.v010a009

    Article  MathSciNet  MATH  Google Scholar 

  45. Laporte, G., Nobert, Y., Desrochers, M.: Optimal routing under capacity and distance restrictions. Oper. Res. 33, 1050–1073 (1985). https://doi.org/10.1287/opre.33.5.1050

    Article  MathSciNet  MATH  Google Scholar 

  46. Lenstra, J.K., Rinnooy Kan, A.H.G.: Some simple applications of the traveling salesman problem. Oper. Res. Quart. 26, 717–33 (1975). https://doi.org/10.2307/3008306

    Article  MATH  Google Scholar 

  47. Ljubić, I., Weiskirchner, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program. 105, 427–449 (2006). https://doi.org/10.1007/s10107-005-0660-x

    Article  MathSciNet  MATH  Google Scholar 

  48. Loboda, A.A., Artyomov, M.N., Sergushichev, A.A.: Solving generalized maximum-weight connected subgraph problem for network enrichment analysis. In: Proceedings of the 16th Workshop Algorithms in Bioinformatics (WABI), pp. 210–221 (2016). https://doi.org/10.1007/978-3-319-43681-4_17

  49. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, \(k\)-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999). https://doi.org/10.1137/S0097539796309764

    Article  MathSciNet  MATH  Google Scholar 

  50. Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci. 4, 237–244 (1977)

    Article  Google Scholar 

  51. Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26, 101–120 (2006). https://doi.org/10.1007/s00493-006-0008-z

    Article  MathSciNet  MATH  Google Scholar 

  52. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete Math. 19, 122–134 (2005). https://doi.org/10.1137/S0895480101393155

    Article  MathSciNet  MATH  Google Scholar 

  53. Sebő, A., Vygen, J.: Shorter tours by nicer ears: \(7/5\)-approximation for the graph-TSP, \(3/2\) for the path version, and \(4/3\) for two-edge-connected subgraphs. Combinatorica (2014). https://doi.org/10.1007/s00493-011-2960-3

    Article  MathSciNet  MATH  Google Scholar 

  54. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 281–290 (2004). https://doi.org/10.1145/1007352.1007399

  55. Trevisan, L.: When Hamming meets Euclid: the approximability of geometric TSP and Steiner tree. SIAM J. Comput. 30, 475–485 (2000). https://doi.org/10.1137/S0097539799352735

    Article  MathSciNet  MATH  Google Scholar 

  56. Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School CE at TU Darmstadt. The second author is supported by the Czech Science Foundation GAČR (Grant #19-27871X), and by the Center for Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004). The third author is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy The Berlin Mathematics Research Center MATH+ (EXC-2046/1, Project ID: 390685689). The fourth author is supported by the Discovery Grant Program of the Natural Sciences and Engineering Research Council of Canada. A preliminary version (extended abstract) of this paper appeared at WG 2019 [24]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Emil Feldmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Disser, Y., Feldmann, A.E., Klimm, M. et al. Travelling on Graphs with Small Highway Dimension. Algorithmica 83, 1352–1370 (2021). https://doi.org/10.1007/s00453-020-00785-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00785-5

Keywords

Navigation