Skip to main content
Log in

An evolutionary finance model with a risk-free asset

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

The purpose of this work is to develop an evolutionary finance model with a risk-free asset playing the role of a numeraire. The model describes a market where one risk-free and several “short-lived” risky assets (securities) are traded in discrete time. The risky securities live one period, yield random payoffs at the end of it, and then are re-born at the beginning of the next period. The main goal of the study is to identify investment strategies that make it possible for an investor to “survive” in the market selection process. It is shown that a strategy of this kind exists, is in a sense asymptotically unique and can be described by a simple explicit formula amenable for quantitative investment analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algoet, P.H., Cover, T.M.: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16(2), 876–898 (1988)

    Google Scholar 

  • Amir, R., Evstigneev, I.V., Hens, T., Xu, L.: Evolutionary finance and dynamic games. Math. Financ. Econ. 5, 161–184 (2011)

    Google Scholar 

  • Amir, R., Evstigneev, I.V., Schenk-Hoppé, K.R.: Asset market games of survival: a synthesis of evolutionary and dynamic games. Ann. Finance 9(2), 121–144 (2013)

    Google Scholar 

  • Arkin, V.I., Evstigneev, I.V.: Stochastic Models of Control and Economic Dynamics. Academic Press, London (1987)

    Google Scholar 

  • Bachmann, K.K., De Giorgi, E.G., Hens, T.: Behavioral Finance for Private Banking: From the Art of Advice to the Science of Advice, 2nd edn. Wiley, Hoboken (2018)

    Google Scholar 

  • Benninga, S., Björk, T., Wiener, Z.: On the use of numeraires in option pricing. J. Deriv. 10, 43–58 (2002)

    Google Scholar 

  • Björk, T.: Arbitrage Theory in Continuous Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  • Borch, K.: A utility function derived from a survival game. Manag. Sci. 12, 287–295 (1966)

    Google Scholar 

  • Bottazzi, G., Dindo, P.: Evolution and market behavior in economics and finance: introduction to the special issue. J. Evolut. Econ. 23, 507–512 (2013a)

    Google Scholar 

  • Bottazzi, G., Dindo, P.: Selection in asset markets: the good, the bad, and the unknown. J. Evolut. Econ. 23, 641–661 (2013b)

    Google Scholar 

  • Bottazzi, G., Dindo, P., Giachini, D.: Long-run heterogeneity in an exchange economy with fixed-mix traders. Econ. Theor. 66, 407–447 (2018)

    Google Scholar 

  • Bottazzi, G., Dosi, G., Rebesco, I.: Institutional architectures and behavioral ecologies in the dynamics of financial markets. J. Math. Econ. 41, 197–228 (2005)

    Google Scholar 

  • Breiman, L.: Optimal gambling systems for favorable games. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 65–78 (1961)

  • Brock, A.W., Hommes, C.H., Wagener, F.O.O.: Evolutionary dynamics in markets with many trader types. J. Math. Econ. 41(Special Issue on Evolutionary Finance), 7–42 (2005)

    Google Scholar 

  • Cabrales, A.: Stochastic replicator dynamics. Int. Econ. Rev. 41, 451–481 (2000)

    Google Scholar 

  • Cover, T.M.: Shannon and investment. IEEE Information Theory Society Newsletter, Summer, Special Golden Jubilee Issue, pp. 10–11 (1998)

  • Coury, T., Sciubba, E.: Belief heterogeneity and survival in incomplete markets. Econ. Theor. 49, 37–58 (2012)

    Google Scholar 

  • Dempster, M.A.H., Evstigneev, I.V., Schenk-Hoppé, K.R.: Volatility-induced financial growth. Quant. Finance 7, 151–160 (2007)

    Google Scholar 

  • Dynkin, E.B.: Game variant of a problem on optimal stopping. Sov. Math. Dokl. 10, 270–274 (1969)

    Google Scholar 

  • Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Evolutionary finance. In: Hens, T., Schenk-Hoppé, K.R. (eds.) Handbook of Financial Markets: Dynamics and Evolution, pp. 507–566. Elsevier, Amsterdam (2009)

    Google Scholar 

  • Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Local stability analysis of a stochastic evolutionary financial market model with a risk-free asset. Math. Financ. Econ. 5, 185–202 (2011)

    Google Scholar 

  • Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Mathematical Financial Economics: A Basic Introduction. Springer, Berlin (2015)

    Google Scholar 

  • Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Evolutionary behavioural finance. In: Haven, E., et al. (eds.) Handbook of Post Crisis Financial Modelling, pp. 214–234. Palgrave MacMillan, London (2016)

    Google Scholar 

  • Farmer, J.D.: Market force, ecology and evolution. Ind. Corp. Change 11, 895–953 (2002)

    Google Scholar 

  • Farmer, J.D., Lo, A.W.: Frontiers of finance: evolution and efficient markets. Proc. Natl. Acad. Sci. U. S. A. 96, 9991–9992 (1999)

    Google Scholar 

  • Foster, D., Young, P.: Stochastic evolutionary game dynamics. Theor. Popul. Biol. 38, 219–232 (1990)

    Google Scholar 

  • Fudenberg, D., Harris, C.: Evolutionary dynamics with aggregate shocks. J. Econ. Theory 57, 420–441 (1992)

    Google Scholar 

  • Gale, D.: On optimal development in a multi-sector economy. Rev. Econ. Stud. 34, 1–18 (1967)

    Google Scholar 

  • Geman, H., El Karoui, N., Rochet, J.C.: Change of numeraire, changes of probability measures and pricing of options. J. Appl. Prob. 32, 443–458 (1995)

    Google Scholar 

  • Germano, F.: Stochastic evolution of rules for playing finite normal form games. Theor. Decis. 62(4), 311–333 (2007)

    Google Scholar 

  • Gintis, H.: Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction, 2nd edn. Princeton University Press, Princeton (2009)

    Google Scholar 

  • Hakansson, N.H., Ziemba, W.T.: Capital growth theory. In: Jarrow, R.A., et al. (eds.) Handbooks in Operations Research and Management Science, pp. 65–86. Elsevier, Amsterdam (1995)

    Google Scholar 

  • Harrison, J., Kreps, J.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 11, 418–443 (1981)

    Google Scholar 

  • Haurie, A., Zaccour, G., Smeers, Y.: Stochastic equilibrium programming for dynamic oligopolistic markets. J. Optim. Theory Appl. 66, 243–253 (1990)

    Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Karni, E., Schmeidler, D.: Self-preservation as a foundation of rational behavior under risk. J. Econ. Behav. Organ. 7, 71–81 (1986)

    Google Scholar 

  • Kelly, J.L.: A new interpretation of information rate. Bell Syst. Tech. J. 35(4), 917–926 (1956)

    Google Scholar 

  • Kifer, Y.: Game options. Finance Stoch. 4, 443–463 (2000)

    Google Scholar 

  • Kojima, F.: Stability and instability of the unbeatable strategy in dynamic processes. Int. J. Econ. Theory 2, 41–53 (2006)

    Google Scholar 

  • Kuhn, D., Luenberger, D.G.: Analysis of the rebalancing frequency in log-optimal portfolio selection. Quant. Finance 10, 221–234 (2010)

    Google Scholar 

  • Latané, H.: Criteria for choice among risky ventures. J. Polit. Econ. 67, 144–155 (1959)

    Google Scholar 

  • Lintner, J.: The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 47(1), 13–37 (1965)

    Google Scholar 

  • Lo, A.W.: The adaptive markets hypothesis: market efficiency from an evolutionary perspective. J. Portf. Manag. 30, 15–29 (2004)

    Google Scholar 

  • Lo, A.W.: Reconciling efficient markets with behavioral finance: the adaptive market hypothesis. J. Invest. Consult. 7, 21–44 (2005)

    Google Scholar 

  • Lo, A.W.: Adaptive markets and the new world order. Financ. Anal. J. 68, 18–29 (2012)

    Google Scholar 

  • Lo, A.W.: Adaptive Markets: Financial Evolution at the Speed of Thought. Princeton University Press, Princeton (2017)

    Google Scholar 

  • Lo, A.W., Orr, H.A., Zhang, R.: The growth of relative wealth and the Kelly criterion. J. Bioecon. 20, 49–67 (2018)

    Google Scholar 

  • Luenberger, D.: Investment Science. Oxford University Press, New York (1998)

    Google Scholar 

  • MacLean, L.C., Ziemba, W.T. (eds.): Handbook of the Fundamentals of Financial Decision Making. World Scientific, Singapore (2013)

    Google Scholar 

  • MacLean, L.C., Thorp, E.O., Ziemba, W.T. (eds.): The Kelly Capital Growth Investment Criterion: Theory and Practice. World Scientific, Singapore (2011)

    Google Scholar 

  • Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  • McKenzie, L.W.: Optimal economic growth, turnpike theorems and comparative dynamics. In: Arrow, K.J., Intrilligator, M.D. (eds.) Handbook of Mathematical Economics III, pp. 1281–1355. North-Holland, Amsterdam (1986)

    Google Scholar 

  • Milnor, J., Shapley, L.S.: On games of survival. In: Dresher, M., et al. (eds.) Contributions to the Theory of Games III, Annals of Mathematical Studies, vol. 39, pp. 15–45. Princeton University Press, Princeton (1957)

    Google Scholar 

  • Mossin, J.: Equilibrium in a capital asset market. Econometrica 34(4), 768–783 (1966)

    Google Scholar 

  • Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. NATO ASI Series. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  • Nikaido, H.: Convex Structures and Economic Theory. Academic Press, New York (1968)

    Google Scholar 

  • Samuelson, L.: Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge (1997)

    Google Scholar 

  • Sciubba, E.: Asymmetric information and survival in financial markets. Econ. Theor. 25, 353–379 (2005)

    Google Scholar 

  • Sciubba, E.: The evolution of portfolio rules and the capital asset pricing model. Econ. Theor. 29, 123–150 (2006)

    Google Scholar 

  • Shannon, C.: Lectures on Investment Problems. MIT (unpublished) (see Cover 1998) (1956)

  • Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. U. S. A. 39, 1095–1100 (1953)

    Google Scholar 

  • Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19(3), 425–442 (1964)

    Google Scholar 

  • Shiller, R.J.: From efficient markets theory to behavioral finance. J. Econ. Perspect. 17(1), 83–104 (2003)

    Google Scholar 

  • Shleifer, A.: Inefficient Markets: An Introduction to Behavioral Finance. Oxford University Press, Oxford (2000)

    Google Scholar 

  • Shubik, M., Thompson, G.: Games of economic survival. Nav. Res. Logist. Q. 6, 111–123 (1959)

    Google Scholar 

  • Thaler, R.H. (ed.): Advances in Behavioral Finance II. Princeton University Press, Princeton (2005)

    Google Scholar 

  • Tobin, J.: Liquidity preference as behavior towards risk. Rev. Econ. Stud. 25(2), 65–86 (1958)

    Google Scholar 

  • Tversky, A., Kahneman, D.: Loss aversion in riskless choice: a reference-dependent model. Q. J. Econ. 106, 1039–1061 (1991)

    Google Scholar 

  • Vega-Redondo, F.: Evolution, Games, and Economic Behavior. Oxford University Press, Oxford (1996)

    Google Scholar 

  • Vieille, N.: Two-player stochastic games I: a reduction. Isr. J. Math. 119(1), 55–91 (2000a)

    Google Scholar 

  • Vieille, N.: Two-player stochastic games II: the case of recursive games. Isr. J. Math. 119(1), 93–126 (2000b)

    Google Scholar 

  • Vieille, N.: Small perturbations and stochastic games. Isr. J. Math. 119(1), 127–142 (2000c)

    Google Scholar 

  • Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    Google Scholar 

  • Zhang, R., Brennan, T.J., Lo, A.W.: Group selection as behavioral adaptation to systematic risk. PLoS ONE 9, 1–9 (2014)

    Google Scholar 

  • Ziemba, W.T., Vickson, R.G.: Models of optimal capital accumulation and portfolio selection and the capital growth criterion. In: MacLean, L.C., et al. (eds.) The Kelly Capital Growth Investment Criterion: Theory and Practice, pp. 473–485. World Scientific, Singapore (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hens.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Financial support from the Swiss National Science Foundation Grant 149856 “Behavioural Financial Markets” (2014–2016) is gratefully acknowledged. The authors are grateful to Rabah Amir and Klaus R. Schenk-Hoppé for helpful comments and fruitful discussions.

Appendix

Appendix

To prove Theorems 1 and 2 we derive a random dynamical system describing the dynamics of the market shares \(r_{t}^{i}\) of the investors \(i=1,\ldots ,N\).

Theorem 3

The following equations hold:

$$\begin{aligned} r_{t+1}^{i}=\sum _{k=0}^{K}R_{t+1,k}\frac{\lambda _{t,k}^{i}r_{t}^{i}}{\langle \lambda _{t,k},r_{t}\rangle },\quad t=0,1,2,\ldots ,\ i=1,2,\ldots ,N. \end{aligned}$$
(24)

Proof

Put

$$\begin{aligned} {\bar{V}}_{t,0}:={\bar{w}}_{t}\ \left[ =\sum _{i=1}^{N}x_{t,0}^{i}=\sum _{i=1}^{N} \lambda _{t,0}^{i}w_{t}^{i}\right] ,\ {\bar{V}}_{t,k}=V_{t,k},\quad k=1,2,\ldots ,K. \end{aligned}$$
(25)

By using the notation \(A_{t+1,0}=1+\beta _{t+1}\), we write

$$\begin{aligned} W_{t+1}= & {} \sum _{i=1}^{N}w_{t+1}^{i}=\sum _{i=1}^{N}\langle A_{t+1},x_{t} ^{i}\rangle =\sum _{i=1}^{N}\sum _{k=0}^{K}A_{t+1,k}x_{t,k}^{i} \nonumber \\= & {} \sum _{k=0}^{K}\left( A_{t+1,k}\sum _{i=1}^{N}x_{t,k}^{i}\right) =(1+\beta _{t+1}){\bar{w}}_{t}+\sum _{k=1}^{K}A_{t+1,k}V_{t,k}=\sum _{k=0} ^{K}A_{t+1,k}{\bar{V}}_{t,k}.\nonumber \\ \end{aligned}$$
(26)

Define \(\lambda _{t,k}:=(\lambda _{t,k}^{1},\ldots ,\lambda _{t,k}^{N})\) and \(w_{t}:=(w_{t}^{1},\ldots ,w_{t}^{N})\). From (7) and (10) we get

$$\begin{aligned} p_{t,k}V_{t,k}=\langle \lambda _{t,k},w_{t}\rangle ,\quad k=1,\ldots ,K, \,\,t\ge 0, \end{aligned}$$

which implies

$$\begin{aligned} x_{t,k}^{i}=\frac{\lambda _{t,k}^{i}w_{t}^{i}}{p_{t,k}}=\frac{\lambda _{t,k} ^{i}w_{t}^{i}V_{t,k}}{\langle \lambda _{t,k},w_{t}\rangle }=\frac{\lambda _{t,k}^{i}w_{t}^{i}{\bar{V}}_{t,k}}{\langle \lambda _{t,k},w_{t}\rangle },\quad k=1,\ldots ,K,\,\,t\ge 0 \end{aligned}$$
(27)

(see 11). Further, we find

$$\begin{aligned} p_{t,0}{\bar{V}}_{t,0}={\bar{V}}_{t,0}={\bar{w}}_{t}=\langle \lambda _{t,0} ,w_{t}\rangle , \end{aligned}$$
(28)

where the first equality holds because \(p_{t,0}=1\), the second follows from (25), and the third is a consequence of (1) and (12). By using (12) and (12), we obtain

$$\begin{aligned} x_{t,0}^{i}=\frac{\lambda _{t,0}^{i}w_{t}^{i}}{p_{t,0}}=\frac{\lambda _{t,0} ^{i}w_{t}^{i}{\bar{V}}_{t,0}}{\langle \lambda _{t,0},w_{t}\rangle }. \end{aligned}$$
(29)

From (29) and (27) we get

$$\begin{aligned} w_{t+1}^{i}= & {} \sum _{k=0}^{K}A_{t+1,k}x_{t,k}^{i}=A_{t+1,0}{\bar{V}}_{t,0} \frac{\lambda _{t,0}^{i}w_{t}^{i}}{\langle \lambda _{t,0},w_{t}\rangle } +\sum _{k=1}^{K}A_{t+1,k}{\bar{V}}_{t,k}\frac{\lambda _{t,k}^{i}w_{t}^{i}}{\langle \lambda _{t,k},w_{t}\rangle } \\= & {} \sum _{k=0}^{K}A_{t+1,k}{\bar{V}}_{t,k}\frac{\lambda _{t,k}^{i}w_{t}^{i}}{\langle \lambda _{t,k},w_{t}\rangle }. \end{aligned}$$

Dividing the first and the last terms in this chain of equalities by \(W_{t+1}\) and using (26), we get

$$\begin{aligned} r_{t+1}^{i}=\sum _{k=0}^{K}\frac{A_{t+1,k}{\bar{V}}_{t,k}}{\sum _{l=0} ^{K}A_{t+1,l}{\bar{V}}_{t,l}}\frac{\lambda _{t,k}^{i}w_{t}^{i}}{\langle \lambda _{t,k},w_{t}\rangle }. \end{aligned}$$
(30)

Observe that

$$\begin{aligned} \frac{\lambda _{t,k}^{i}w_{t}^{i}}{\langle \lambda _{t,k},w_{t}\rangle } =\frac{\lambda _{t,k}^{i}w_{t}^{i}/W_{t}}{\langle \lambda _{t,k},w_{t} /W_{t}\rangle }=\frac{\lambda _{t,k}^{i}r_{t}^{i}}{\langle \lambda _{t,k} ,r_{t}\rangle }. \end{aligned}$$
(31)

Further, we have

$$\begin{aligned}&\frac{A_{t+1,k}{\bar{V}}_{t,k}}{\sum _{l=0}^{K}A_{t+1,l}{\bar{V}}_{t,l}} =\frac{a_{t+1,k}\,{\bar{w}}_{t}{\bar{V}}_{t,k}}{\left( 1+\beta _{t+1}\right) {\bar{w}}_{t}+\sum _{l=1}^{K}a_{t+1,l}\,{\bar{w}}_{t}{\bar{V}}_{t,l}} \nonumber \\&\quad =\frac{a_{t+1,k}\,V_{t,k}}{\sum _{l=0}^{K}a_{t+1,l}\,V_{t,l}}=R_{t+1,k} \end{aligned}$$
(32)

(\(k=1,\ldots ,K\)) and

$$\begin{aligned}&\frac{A_{t+1,0}{\bar{V}}_{t,0}}{\sum _{l=0}^{K}A_{t+1,l}{\bar{V}}_{t,l}} =\frac{\left( 1+\beta _{t+1}\right) \,{\bar{w}}_{t}}{\left( 1+\beta _{t+1}\right) {\bar{w}}_{t}+\sum _{l=1}^{K}a_{t+1,l}\,{\bar{w}}_{t}V_{t,l}} \nonumber \\&\quad =\frac{a_{t+1,0}\,V_{t,0}}{\sum _{l=0}^{K}a_{t+1,l}\,V_{t,l}}=R_{t+1,0} \end{aligned}$$
(33)

[see (18) and (19)]. By substituting (31)–(33) into (30), we arrive at (24).

The proof is complete. \(\square \)

We have shown that the dynamics of the market shares \(r_{t}^{i}\) of the investors \(i=1,2,\ldots ,N\), in the model at hand is governed by the random dynamical system (24). A detailed analysis of this system was carried out in Amir et al. (2013). Theorems 1 and 2 are direct consequences of Theorems 4 and 5 proved in Amir et al. (2013), which we formulate below.

Let \(R_{t,k}(s^{t})\ge 0\) (\(t=0,1,2,\ldots \); \( k=0,\ldots ,K\)) be measurable real-valued functions satisfying (20) and (22). Consider sequences of measurable vector functions \(\Lambda =(\lambda _{t}(s^{t} ))_{t=0}^{\infty }\), where \(\lambda _{t}(s^{t})=(\lambda _{t,0}(s^{t} ),\ldots ,\lambda _{t,K}(s^{t}))\in \Delta ^{K+1}\). Denote by \({\mathcal {L}}\) the set of N-tuples \((\Lambda ^{1},\ldots ,\Lambda ^{N})\) of such sequences for which the random dynamical system (24) generates well-defined vectors \(r_{t}^{i}=(r_{t,0}^{i},\ldots ,r_{t,K}^{i})\in \Delta ^{K+1}\), \(i=1,\ldots ,N\), \(t=0,1,\ldots \), i.e., the validity of the inequality

$$\begin{aligned} \sum _{i=1}^{N}\lambda _{t,k}^{i}r_{t}^{i}>0,\quad k=0,1,\ldots ,K, \end{aligned}$$

is guaranteed for each \(t\ge 0\). Define \(\Lambda ^{*}=(\lambda _{t}^{*}(s^{t}))_{t=0}^{\infty }\) by (21).

Theorem 4

For each \((\Lambda ^{1},\ldots ,\Lambda ^{N} )\in {\mathcal {L}}\) with \(\Lambda ^{1}=\Lambda ^{*}\), we have \(\inf _{t\ge 0}r_{t}^{1}>0\) (a.s.).

Theorem 5

Let \(\Lambda =(\lambda _{t}(s^{t}))_{t=0}^{\infty } \) be a sequence of measurable vector functions with values in \(\Delta ^{K+1}\). If \(\inf _{t\ge 0}r_{t}^{1}>0\) for any \((\Lambda ^{1},\ldots ,\Lambda ^{N})\in {\mathcal {L}}\) with \(\Lambda ^{1}=\Lambda \), then (23) holds.

For proofs of Theorems 4 and 5 see Amir et al. (2013, Section 4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkov, S., Evstigneev, I.V. & Hens, T. An evolutionary finance model with a risk-free asset. Ann Finance 16, 593–607 (2020). https://doi.org/10.1007/s10436-020-00370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-020-00370-4

Keywords

JEL Classification

Navigation