Skip to main content

Advertisement

Log in

The Effect of Remelting on Microstructure and Hydrogen Storage Properties of Ti–Mn–V Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this research, the effect of multiple remelting on microstructure and hydrogen storage properties of (TiZr)1(VFeCrMn)2.1 alloy was studied. The alloy was melted using a VIM furnace. This process was repeated three times. The microstructure was evaluated by SEM and XRD analysis, and the hydrogen storage properties were measured by Sieverts method. The results indicated that the microstructure contains predominant C14 Laves, BCC solid solution and titanium oxide phases. The homogenous microstructure and fine BCC phase distribution was obtained by remelting. The volume fraction of BCC phase was decreased from 26 to 18% during remelting. PCT curves revealed that increasing remelting times results in decreasing slope and hysteresis factors. The values of alloys slope factor for single, double and triple melting are 0.57, 0.26 and 0.21, respectively. Therefore, hydrogen storage properties of the alloy are improved as a result of homogenous microstructure and appropriate content of phases during the remelting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ulmer U, Dieterich M, Pohl A, Dittmeyer R, Linder M, and Fichtner M, Int J Hydrog Energy 42 (2017) 20103.

    Article  CAS  Google Scholar 

  2. Broom D P, Hydrogen Storage Materials, Green Energy and Technology, Springer, London (2011), p 1.

    Book  Google Scholar 

  3. Kazemipour M, Salimijazi H, Saidi A, and Saatchi A, Int J Hydrog Energy 39 (2014) 12784.

    Article  CAS  Google Scholar 

  4. Prachi R P, and Mahesh M W, Adv Energy Power 4 (2016) 11.

    Article  Google Scholar 

  5. Guo X, Wang S, Liu X, Li Z, Lü F, Mi J, Hao L, and Jiang L, Rare Met 30 (2011) 227.

    Article  CAS  Google Scholar 

  6. Yu X, Wu Z, Xia B, and Xu N, J Alloys Compd 372 (2004) 272.

    Article  CAS  Google Scholar 

  7. Young K H, Batteries 4 (2018) 9.

    Article  Google Scholar 

  8. Zhang Y, Zhang T, Li J, Li R, Yu Y, and Lu Y, Met Mater Int 25 (2019) 814.

    Article  CAS  Google Scholar 

  9. Chen X, Chen R, Ding X, Li X, Ding H, Su Y, Gou J, and Fu H, Int J Hydrog Energy 43 (2018) 19567.

    Article  CAS  Google Scholar 

  10. Ma P, Wu E, and Li W, Int J Hydrog Energy 39 (2014) 13569.

    Article  CAS  Google Scholar 

  11. Teliz E, Díaz V, Piganelli V, Faccio R, and Zinola C F, J Electrochem Soc 165 (2018) A3389.

    Article  CAS  Google Scholar 

  12. Young K, Ouchi T, Yang J, and Fetcenko M, Int J Hydrog Energy 36 (2011) 11137.

    Article  CAS  Google Scholar 

  13. Kazemipour M, Salimijazi H, Saidi H, Saatchi A, Mostaghimi J, and Pershin L, Int J Hydrog Energy 40 (2015) 15569.

    Article  CAS  Google Scholar 

  14. Pei P, Song X, Liu J, Chen G, Qin X, and Wang B, Int J Hydrog Energy 34 (2009) 8094.

    Article  CAS  Google Scholar 

  15. Yu X, Wu Z, Li F, Xia B, and Xu N, Appl Phys Lett 84 (2004) 3199.

    Article  CAS  Google Scholar 

  16. Kim J H, Han K S, Hwang K T, Kim B G, and Kang Y M, Int J Hydrog Energy 38 (2013) 6215.

    Article  CAS  Google Scholar 

  17. Semboshi S, Masahashi N, Konno T J, Sakurai M, and Hanada S, J Alloys Compd 379 (2004) 290.

    Article  CAS  Google Scholar 

  18. Young K, Fetcenko M, Li F, and Ouchi T, J Alloys Compd 464 (2008) 238.

    Article  CAS  Google Scholar 

  19. Zhang Y H, Li P, Wang X L, Lin Y F, and Qu X H, J Alloys Compd 364 (2004) 289.

    Article  CAS  Google Scholar 

  20. Iba H, and Akiba E, J Alloys Compd 231 (1995) 508.

    Article  CAS  Google Scholar 

  21. Wong D, Young K, and Ng K, Model Simul Mater Sci 24 (2016) 085007.

    Article  Google Scholar 

  22. Hang Z, Xiao X, Tan D, He Z, Li W, Li S, Chen C, and Chen L, Int J Hydrog Energy 35 (2010) 3080.

    Article  CAS  Google Scholar 

  23. Huang T, Wu Z, Sun G, and Xu N, Intermetallics 15 (2007) 593.

    Article  CAS  Google Scholar 

  24. Pickering L, TiVMn Based Metal Hydrides for Hydrogen Storage and Compression Applications, Ph.D. Thesis, University of Birmingham, England (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Seifollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, M., Abbasi, S.M., Seifollahi, M. et al. The Effect of Remelting on Microstructure and Hydrogen Storage Properties of Ti–Mn–V Alloy. Trans Indian Inst Met 74, 811–816 (2021). https://doi.org/10.1007/s12666-020-02178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02178-2

Keywords

Navigation